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Abstract 
Ambiguity pervades language. One prevalent kind of 
ambiguity is indirect requests. For example, “My office is 
really hot” could be intended not only as a complaint about 
the temperature, but as a request to turn on the AC. How do 
comprehenders determine whether a speaker is making a 
request? We ask whether the prosody of an utterance provides 
information about a speaker’s intentions. In a behavioral 
experiment, we find that human listeners can identify which 
of two utterances a speaker intended as a request, suggesting 
that speakers can produce discriminable cues. We then show 
that the acoustic features associated with an utterance allow a 
classifier to detect the original intent of an utterance (74% 
accuracy). Finally, we ask which of these features predict 
listener accuracy on the behavioral experiment. 

Keywords: indirect requests; prosody; language production; 
language comprehension; inference 

Introduction 
People often make requests indirectly. For example, “Can 
you open that window?” is literally a question about the 
hearer’s ability to open the window, but is often intended 
instead as an implied request for the hearer to open the 
window. Some indirect requests use a highly 
conventionalized form (in this example, “Can you X?”). 
But other indirect requests are less conventional, such as 
“My office is really hot.” Indirect requests have been a topic 
of active research for decades in psycholinguistics (Gibbs, 
1979), philosophy (Searle, 1990), cognitive psychology 
(Holtgraves, 1994), and natural language processing 
(Perrault & Allen, 1980; Williams et al, 2018) for several 
reasons. First, they’re exceedingly frequent. One study 
eliciting requests from participants found that over 80% 
were indirect in some way (Gibbs, 1981). Second, 
successfully comprehending indirect requests requires the 
hearer to make inferences about the speaker’s intent, using 
linguistic and other contextual knowledge, potentially 
involving diverse cognitive systems, which can pose 
challenges to computational implementations of language 
comprehension (Briggs, Williams, & Scheutz, 2017). But it 
still remains to be determined what information human 

comprehenders use to recover the intended interpretation of 
a potential indirect request. 

Previous work suggests that successfully understanding 
indirect requests requires the integration of extra-linguistic 
contextual information. For conventional indirect requests, 
comprehenders can use the form of the utterance as a partial 
cue to its meaning. Consequently, conventional indirect 
requests are thought to be easier to understand (Gibbs, 
1981), and in some cases the request interpretation may 
even be the default (Gibbs, 1986). But even conventional 
indirect requests can pose a challenge: the conventionality 
of a particular form is still dependent on context (Gibbs, 
1986), and canonical forms can even lead listeners to 
misidentify intended questions as requests (e.g. “Can you 
play tennis?”), as has been reported for individuals with 
anterior aphasia and right-hemisphere brain damage (Hirst, 
LeDoux, & Stein, 1984).  

Less conventional indirect requests, such as “My office is 
really hot”, require the hearer to infer both the speech act 
(e.g. is it a request?) as well as the intended substance of the 
request, and are thus thought to incur higher processing 
costs than their literal, non-request counterparts (Tromp, 
Hagoort, and Meyer, 2016), as well as more conventional 
indirect requests (Gibbs, 1981). Successful disambiguation 
of these utterances may benefit from co-speech gesture and 
eye gaze (Kelly et al, 1999), as well as a representation of 
what is mutually known across interlocutors (Gibbs, 1987; 
Trott & Bergen, 2018).  

Finally, indirect requests have proven challenging for 
machine language understanding. Wizard-of-Oz style 
experiments show that human speakers continue to use 
indirect requests when speaking to robots (Briggs, Williams, 
& Scheutz, 2017), even when those robots demonstrably 
cannot understand them (Williams et al, 2018). Current 
state-of-the-art solutions (Briggs, Williams, & Scheutz, 
2017) use rules relating utterance forms to contexts to 
probabilistically derive the intended interpretation of 
ambiguous utterances like “Can you knock down the red 
tower?” While these solutions work well for established 
utterance-context mappings, they could still benefit from an 
increased understanding of precisely which disambiguating 



information is available (e.g. paralinguistic or extralinguistic 
cues), and which is actively exploited by human 
comprehenders.  

Specifically unexplored to date as a candidate source of 
disambiguating information, is prosody: the intonational, 
rhythmic, and tonal properties of how an utterance is spoken 
or signed.  

Prosodic Cues for Disambiguation 
Previous work on other kinds of linguistic ambiguity has 
already demonstrated that prosodic cues can provide 
disambiguating information about a speaker’s intent. 

For one, prosodic features such as pitch and pause 
duration can act as “parsing instructions” for listeners. 
Using speech synthesis, Beach (1991) modified the pitch 
and duration of critical regions of sentences involving 
temporary ambiguity (e.g. whether a noun phrase was 
functioning as a sentential complement or direct object), and 
found that participants were able to identify the intended 
parse without listening to the entire utterance. Similarly, 
Price et al (1991) found that FM radio newscasters, naïve to 
the purposes of the experiment, produced marked prosodic 
cues that aided listeners’ comprehension of parenthetical 
statements, apposition, and prepositional phrase attachment 
ambiguities. This boost in comprehension may even occur 
before the ambiguity is encountered, as suggested by 
differences in the visual scan patterns of listeners tasked 
with determining which object a speaker was referring to 
(Snedeker & Trueswell, 2003). Nonetheless, there are still 
substantial debates about the conditions under which 
speakers reliably produce such cues––some studies 
(Allbritton et al, 1996; Snedeker & Trueswell, 2003) have 
found that discriminating prosodic cues disappear in the 
presence of sufficiently disambiguating contextual 
information, while others (Schafer et al, 2000; Speer et al, 
2011) have found that they persist, and have argued that the 
failure to find such cues is due to limitations on the 
elicitation paradigms used (e.g. being non-interactive or 
having low stakes). Regardless, the evidence shows that 
when such cues are available, listeners improve at 
identifying the intended syntactic parse––pointing to a clear 
role for prosodic features in syntactic disambiguation.   

There is also a growing body of evidence that prosody 
helps a comprehender decipher a speaker’s pragmatic 
intentions. Early work (Shriberg et al, 1998) found that 
including prosodic features from conversational speech 
(including duration, pause, F0, energy, and speech rate) 
improved a classifier’s ability to categorize utterances by 
Dialogue Act, above and beyond a model equipped with 
only statistical word-level features. While these results do 
not indicate that human comprehenders infer a speaker’s 
intentions on the basis of prosodic-level features, they do 
suggest that such features are, in principle, useful. More 
recently, Hellbernd & Sammler (2016) asked whether 
trained human speakers could produce cues that identified 
the intended speech act of one-word utterances––e.g. 
producing the word “beer” as a Warning, Criticism, or 

Suggestion. In a behavioral task, human listeners 
successfully identified the speaker’s intended speech act for 
82% of words (and 73% of non-words). The authors also 
trained a machine learning classifier to categorize speech act 
using prosodic features (duration, mean intensity, 
harmonics-to-noise ratio, mean fundamental frequency, and 
pitch rise), obtaining 92% accuracy for words (and 93% for 
non-words).  

Additional evidence that people use prosody to 
disambiguate comes from research on irony detection. 
Listeners were able to identify the presence (or absence) of 
irony in spontaneously-produced speech from radio shows 
when presented in auditory, but not written, format (Bryant 
& Fox Tree, 2002), suggesting that success was at least 
partially dependent on information contained in the speech 
signal (though see Bryant & Fox Tree (2005) for further 
discussion of whether these prosodic features are global or 
local, and whether they are uniquely characteristic of irony 
in particular). More recent studies (Deliens et al, 2018) have 
confirmed that prosodic features aid in the detection of 
irony; however, listeners appear to exhibit a speed/accuracy 
trade-off in the integration of prosodic vs. contextual 
congruity cues, respectively.  

Finally, beyond the level of individual speech acts, 
prosodic features have been shown to improve the detection 
of a speaker’s attitudinal stance (Pell et al, 2018; Ward et al, 
2017; Ward et al, 2018). Features such as speech rate and 
pitch can also influence judgments about the perceived 
politeness of a speech act, including requests (Caballero et 
al, 2018), though as has been pointed out, the information 
conveyed by a given prosodic feature is not necessarily 
independent from the social-interactional context in which 
that feature is observed (Wichmann, 2000; Culpeper, 
Bousfield, & Wichmann, 2003).  

Together, these findings indicate that speakers are capable 
of producing signals whose prosodic features provide 
information about the intended syntactic parse or pragmatic 
interpretation. Critically, these signals are reliable enough to 
be detectable––and useful––to both human and machine 
comprehenders.  

However, the role of prosodic features in signaling the 
intended interpretation of potential indirect requests is 
currently unexplored. Do speakers and hearers use prosody 
to overcome the pragmatic ambiguity intrinsic to the most 
common way to make requests? We addressed this in the 
current work through three core questions. First, can 
speakers produce reliable cues to indicate to human listeners 
whether or not they are making a request? Second, which 
cues do speakers actually produce? And third, are these the 
same cues that listeners seem to use?  

Note that all critical data, as well as the code to reproduce 
the analyses described below, can be found online at: 
https://github.com/seantrott/prosody_indirect_requests.  

Experiment: Listener Judgments of Intent 
In a behavioral experiment, we asked whether speakers can 
produce reliably discriminable prosodic cues. Specifically, 



we asked whether these prosodic cues reliably aid human 
listeners in discriminating the speaker’s pragmatic intent. 
On each trial, participants were given two recordings of the 
same utterance by the same speaker (e.g. “Can you open 
that window?”, or “My soup is cold”), and were asked to 
select which of the two utterances was intended as a request. 
If speakers can produce detectable, reliable cues, then 
participants should be able to identify which utterance was 
produced as a request; but if speakers cannot produce such 
cues, or if the cues they produce are not usable by human 
listeners, then participants should perform at chance.  

Methods 
Participants 78 participants, all native English speakers, 
were recruited from Amazon Mechanical Turk. We aimed to 
recruit 80 participants, but Mechanical Turk under-sampled 
to 78 participants. The mean age of our participants was 37 
(SD=11), ranging from 20 to 69. 30 identified as female, 45 
as male, 2 as non-binary, and 1 declined to answer. Each 
participant was paid $2 for participating, and the experiment 
took on average 24 minutes to complete. 
Materials We recorded five English speakers (2 male, 3 
female). Speakers were given 12 utterances to produce (6 
conventional indirect requests of the form “Can you X?”, 
and 6 non-conventional indirect requests of the form “My X 
is Y”), and were instructed to say each utterance twice––
once as a request, and once as a literal question or statement. 
They were allowed to read over the utterances before 
speaking. The experiment was implemented using JsPsych 
(de Leeuw, 2015).  
Procedure After completing an audio check, participants 
were instructed that they would listen to a series of paired 
utterances. They were told that one member of each pair 
was always intended as a request, and the other member was 
not. Their task was to indicate which was the request by 
selecting one of two buttons (either “First” or “Second”, 
corresponding to the first or second utterance presented).  

On each trial, participants heard two utterances, 
containing the same words and produced by the same 
speaker, with 1 second of silence following each utterance. 
The order of the utterances (e.g. whether the request or non-
request version came first) was counterbalanced within-
speaker using a weighted randomization scheme (e.g. for 
each speaker-block, 6 trials contained the request version 
first, and 6 contained the non-request version first). After 
listening to both versions, participants indicated which one 
they thought was intended as a request via button-press. 

Each participant performed 60 trials (12 utterance pairs 
for each of the 5 speakers), blocked by speaker. The order 
of the trials within each speaker-block was randomized, as 
was the order of speaker-blocks. 

Results 
All statistical analyses were performed in R (R Core Team, 
2017), using the lme4 package (Bates et al, 2015). Random 
effects structure was determined by beginning with the 

maximal model, then reducing as needed for model 
convergence (Barr et al, 2013). 

Our first question was whether participants could 
successfully determine which utterance was intended as the 
request. To test this, we built a generalized linear mixed 
effects model, with response (First or Second) as the 
dependent variable, and correct answer (First or Second) as 
a fixed effect, as well as random slopes for the effect of 
correct answer for both subjects and items (as well as 
random intercepts for both). We compared this full model to 
a reduced model omitting the fixed effect of correct answer, 
and found that the full model explained significantly more 
variance [X2(1)=24.97, p=5.8*10-7]. In other words, 
participants were able to discriminate request and non-
request utterances at a rate above chance. 

We were also interested in which characteristics predicted 
accuracy on particular items––were participants better at 
identifying pragmatic intent for certain forms (conventional 
vs. non-conventional), or for certain speakers? We used 
nested model comparisons, with correct (Yes or No) as a 
dependent variable, by-item random slopes for speaker, by-
subject random slopes for form, and random intercepts for 
both items and subjects, to determine whether form, 
speaker, and their interaction explained independent sources 
of variance in participant accuracy. A model with fixed 
effects for both form and speaker explained more variance 
than a model with form alone [X2(4)=11.5, p=.02], as well 
as a model with speaker alone [X2(1)=5.2, p=.02]. Adding 
an interaction between form and speaker explained 
additional variance [X2(4)=14.1, p=.007]. In other words, 
certain speakers produced more discriminable signals 
overall, and conventional requests were generally easier to 
identify than non-conventional requests, except in the case 
of one speaker, “S2” (see Figure 1).  

 

 
Figure 1: Human accuracy was above chance for all 
speakers and forms. Accuracy was higher for some speakers 
(e.g. S3, S4) and some forms (e.g. conventional requests). 
Dotted red line signifies chance (50%). 

 
One possibility is that participants improved in accuracy 

over the course of the experiment, perhaps learning which 
prosodic features signaled intent. We compared a model 



with correct (Yes/No) as a dependent variable, Order (1-60) 
as a fixed effect, and random intercepts for subjects and 
items, to a model omitting the fixed effect of Order, and 
found that the full model did not explain significantly more 
variance [X2(1)=.7, p=.4]. Thus, there is no evidence that 
participants improved over the course of experiment. 
However, it is also possible that participants improved 
within each speaker-block, but that this adaptation did not 
carry over across blocks. To test this, we replaced Order 
with Order-within-block (1-12) as a fixed effect; a model 
including Order-within-block explained marginally more 
variance than a model omitting this term [X2(1)=3.1, p=.08]. 
This explanatory power was independent from the 
variability explained by speaker, as determined by 
comparison of a model including fixed effects of both 
speaker and Order-within-block to a model with only 
speaker [X2(1)=3.3, p=.07]. Adding an interaction between 
these factors did not increase explanatory power [X2(4)=3.3, 
p=.5]. This provides weak evidence for within-block 
adaptation or learning, but requires further analysis and 
experimentation. 

Analysis of Acoustic Features 
Listener judgments of pragmatic intent in the behavioral 
experiment described above demonstrated that speakers 
produced signals that increased communicative success. 
However, this analysis does not indicate which acoustic 
features predict a speaker’s intended pragmatic 
interpretation. Here, we asked whether seven acoustic 
features reliably predicted a speaker’s intent. Predictive 
power was assessed in two ways. First, we asked about the 
explanatory power of each variable in turn using nested 
model comparisons. Second, we used leave-one-out cross-
validation to determine how the combination of all features 
improved the ability of a classifier to identify intent.   

Data Processing 
For each of the 120 recordings (5 speakers producing 12 
utterances with two versions each), we used Parselmouth 
(Jadoul et al, 2018), a Python interface to Praat, to extract 
the following acoustic features: mean F0, range F0 (max F0 
– min F0), standard deviation of F0, duration (number of 
voiced frames), mean intensity, standard deviation of 
intensity, and slope of F0 (slope of regressing F0 ~ time). 
We then z-scored each of these variables with respect to 
each speaker’s mean and SD, to account for considerable 
variability in speakers overall. 

Results 
First, we asked how much independent variance was 
explained by each feature in turn, comparing a full model 
(including all seven features) to a model omitting only the 
feature under consideration. In each case, the full model 
included intent (Request vs. Non-Request) as a dependent 
variable, fixed effects for each of the seven acoustic 
features, and random intercepts for each utterance. We 
adjusted for multiple comparisons using Holm-Bonferroni 

corrections (Holm, 1979). In each case, a positive 
coefficient represents a higher likelihood of a Non-Request, 
while a negative coefficient represents a higher likelihood of 
a Request. 

For a logistic regression model predicting intent of all 
items (e.g. both conventional and non-conventional 
utterances), model fit was improved by including mean 
intensity [X2(1)=8.7, p=.003, padj=.02] and SD intensity 
[X2(1)=7.8, p=.005, padj=.03]. Higher-intensity utterances 
were more likely to be Requests [b=-.69, SE=.25, p=.006], 
as were utterances were with greater variation in intensity 
[b=-1.1, SE=.4, p=.01]. No other acoustic features 
significantly improved model fit after correcting for 
multiple comparisons.  

Because human listener accuracy differed significantly as 
a function of form (see the behavioral experiment), it is 
possible that distinct prosodic features predict intent for 
conventional and non-conventional requests. Thus, we ran 
the same analysis as above twice: once on only conventional 
and once on only non-conventional requests. 

For a model predicting intent of only conventional 
requests, model fit was improved by including F0 slope 
[X2(1)=7.8, p=.005, padj=.03], SD intensity [X2(1)=7.7, 
p=.005, padj=.03], and F0 duration [X2(1)=8.8, p=.003, 
padj=.02]. More positive slopes were associated with Non-
Requests, e.g. literal questions [b=1.1, SE=.5, p=.01], as 
were longer utterances [b=1.1, SE=.4, p=.01] and less 
variation in intensity [b=-1.1, SE=.4, p=.01].   

For a model predicting intent of only non-conventional 
requests, model fit was significantly improved by including 
F0 duration [X2(1)=19.6, p=9.7*10-6, padj=.00004], with 
longer utterances having a higher probability of being 
Requests [b=-2.5, SE=.94, p=.008].  

In sum, we identified several acoustic features that predict 
pragmatic intent. Overall, intent was predicted by mean 
intensity and SD intensity. For conventional requests in 
particular, intent was predicted by F0 slope, F0 duration, 
and SD intensity; for non-conventional requests, intent was 
predicted by F0 duration. These results suggest that those 
features could, in principle, be used to identify the intent of 
an ambiguous utterance. 

To determine whether the combination of all seven 
acoustic features could improve a classifier’s ability to 
detect intent, we used leave-one-out cross-validation 
(LOOCV). A model including all seven acoustic features (as 
well as their interactions with form) accurately predicted 
intent on 74% of the held-out items, a rate substantially 
above chance (50%). 

Predicting Accuracy from Acoustic Features 
By regressing pragmatic intent against extracted acoustic 
features, we isolated multiple features that appear to indicate 
intent of either conventionally or non-conventionally 
formatted utterances: F0 slope, F0 duration, mean intensity, 
and SD intensity. However, this does not entail that listeners 
actively exploit differences in these features to infer intent. 
It could be that these features are statistically reliable, but 



not psychologically valid. Which, if any, of these features 
actually benefit listeners? 

One way to test this is to ask: do by-item differences in 
any of the acoustic features explain independent sources of 
variance in listener accuracy, above and beyond the full 
model specified above in the behavioral experiment 
(containing an interaction between form and speaker)? If 
larger differences from a given dimension (e.g. F0 slope) 
consistently predict accuracy, this suggests that listeners are 
actively benefitting from those differences, and are thus 
consistently sampling and deploying information about that 
particular dimension. 

Data Processing 
For each utterance pair, we computed the difference of each 
z-scored feature between the Request version and the Non-
request version. Thus, a positive value for F0 slope 
difference indicates that the Request version had a larger 
slope than the Non-request version, while a negative value 
indicates that the Non-request version had a larger slope. 
We repeated this procedure for each acoustic feature.  

Results 
We asked about the informativeness of each acoustic feature 
(as well as its interaction with form) using nested model 
comparisons. The explanatory power of a given variable 
was determined by comparing a model including that term 
to a model without it. We adjusted for multiple comparisons 
using Holm-Bonferroni corrections (Holm, 1979).   

The full model included the terms from the maximal 
model specified in the behavioral experiment, with correct 
(Yes/No) as a dependent variable, an interaction between 
form and speaker, fixed effects for both form and speaker, 
and random intercepts for subjects and items. It also 
included each of the seven acoustic features, as well as their 
interaction with form.  

 

 
Figure 2: Differences in z-scored F0 slope by form and 
accuracy. Conventional items with a larger difference 
between the Request and Non-Request version (specifically, 
where the slope on the Non-Request version was more 
positive than the slope on the Request version) were more 
likely to be answered correctly. 

Model fit was significantly improved by the interaction 
between F0 slope difference and form [X2(1)=16.98, 
p=3.78*10-4, padj=.0005], but was not significantly improved 
by F0 slope difference alone (padj>.1). The direction of this 
interaction is illustrated in Figure 2: accuracy on non-
conventional items was not significantly impacted by the 
difference in F0 slope between the Request and Non-
Request differences, whereas a larger difference for 
conventional items predicted more accurate responses. 
Specifically, conventional items on which the Non-Request 
version had a more positive slope than the Request version 
(and thus their difference was more negative) were more 
likely to be answered correctly [b=-.4, SE=.1, p=5.5*10-5]. 

Model fit was also improved by the interaction between 
mean F0 and form [X2(1)=10.6, p=.001, padj=.01], as well as 
the main effect of mean F0 [X2(1)=15.03, p=.0001, 
padj=.001]. Specifically, conventional items on which the 
Request version had a lower mean F0 than the Non-Request 
version were more likely to be answered correctly [b=-.47, 
SE=.14, p=.001]. Because these comparisons included a 
term for F0 slope, this does not appear to be due simply to 
conventional Non-Request items exhibiting a sharper final 
rise (e.g. more positive slope). Differences in mean F0 
explained independent sources of variance from F0 slope. 

A model including an interaction between mean intensity 
and form did not explain more variance than a model 
omitting that term, but the fixed effect of mean intensity did 
improve model fit [X2(1)=9.7, p=.002, padj=.02]. 
Specifically, items on which the Request version had a 
higher overall mean intensity than the Non-Request version 
were marginally more likely to be answered correctly [b=.1, 
SE=.05, p=.06].  

Model fit was also improved by the interaction between 
SD intensity and form [X2(1)=7.12, p=.008, padj=02], though 
not the fixed effect of SD intensity alone (padj>.1). 
Conventional items on which the Request version exhibited 
greater variation in intensity than the Non-Request version 
were more likely to be answered correctly [b=.29, SE= .11, 
p=.007].  

In summary, four of the acoustic features we extracted 
predicted listener accuracy––F0 slope, mean F0, mean 
intensity, and SD intensity. F0 slope appeared to be useful 
primarily for conventional requests (with more positive 
slopes indicating the literal, Non-Request interpretation). 
Mean F0 was helpful for both, though again, appeared to be 
particularly predictive of accuracy on the conventional items 
(with higher mean F0 on the Non-Request versions 
predicting higher accuracy). Mean intensity was predictive 
of accuracy on both kinds of items; items on which the 
Request version exhibited higher overall intensity than the 
Non-Request version were more likely to be answered 
correctly. Finally, SD intensity was particularly helpful for 
conventional items––Request versions with more variability 
in intensity than their Non-Request counterpart were more 
likely to be correctly identified.  



General Discussion 
Human listeners were able to discriminate the pragmatic 
intent of potential indirect requests, indicating that speakers 
can produce discriminable cues, at least when made aware 
of an utterance’s different interpretations. We extracted 
seven acoustic features from each recorded utterance, and 
found that four of these features were predictive of listener 
accuracy in the behavioral experiment: F0 slope, mean F0, 
mean intensity, and SD intensity. Specifically, larger 
differences in each of these features were associated with 
more accurate responses; some were primarily helpful for 
conventional items (F0 slope, SD intensity, mean F0), while 
others were helpful for both (mean intensity). 

Additionally, using leave-one-out cross-validation, a 
machine learning classifier trained on these features (and 
their interaction with utterance form) successfully identified 
the intent of potential request utterances 74% of the time 
(where chance is 50%). Thus, prosodic features are not only 
useful to human comprehenders attempting to discriminate a 
speaker’s pragmatic intent––they are also informative to 
machines, suggesting that they could perhaps be integrated 
into existing natural language understanding architectures 
(Briggs et al, 2017). 

Open questions remain. First, we noted a weak effect of 
Order-within-block, but not Order overall, on accuracy. 
That is, there is no evidence that listeners improved over the 
course of the entire experiment, but they might have 
improved while listening to each speaker. If true, this 
provides weak evidence for adaptation to each speaker, 
which may not successfully carry over across speakers. The 
effect was marginally significant. Since it arose during 
exploratory data analysis, it requires further investigation. 

Second, a limitation of the behavioral experiment is that 
participants were asked to explicitly discriminate between 
two versions of the same utterance (e.g. “which was the 
request?”), rather than classifying an individual utterance 
(e.g. “is that a request?”). The latter design is clearly more 
applicable to real-world scenarios, in which comprehenders 
do not have immediate access to alternative versions of an 
utterance. We are designing a new set of studies to ask 
whether comprehenders can identify whether a given 
utterance was intended as a request, and whether the same 
acoustic features—e.g. F0 slope, mean intensity, etc.—
predict their response. This task design will also allow more 
direct comparison to the classifier’s results, so that we can 
determine whether the classifier is using similar features 
(and making similar errors) as human comprehenders. 

Third, a long-standing question in the literature on 
prosody and pragmatic intent is whether particular prosodic 
features convey direct information about the intended 
speech act, or whether they function primarily as contrastive 
markers, which invite the listener to perform additional 
inference. For example, prosodic features may not directly 
convey sarcastic intent, but rather prompt listeners to 
integrate other multimodal, contextual information to 
recognize irony (Attardo, Eisterhold, Hay, & Poggi, 2003; 
Bryant & Fox Tree, 2005). Our experiment was not 

designed to adjudicate between these two possibilities, but 
our results do suggest that the answer is nuanced, and likely 
falls somewhere in between. Certain features, such as F0 
slope, were predictive only of accuracy for conventional 
forms (E.g. “Can you open that window?”), and thus might 
be more aptly described as “marking” a deviation from the 
default interpretation of modal interrogatives as requests 
(Gibbs, 1986). But other features, such as mean intensity, 
predicted accuracy across forms; in both cases, items with 
higher intensity on the Request version (vs. the Non-
Request version) were more likely to be answered correctly.        

Finally, perhaps the most obvious question is whether, or 
under what conditions, these kinds of prosodic cues would 
actually be produced. Speakers in our experiment were 
made aware of the two interpretations of each utterance, and 
were explicitly asked to produce utterances consistent with 
those interpretations. While our results indicate that 
speakers can produce discriminable cues, they do not 
demonstrate that speakers actually do. A similar issue arises 
in the study of prosodic cues for syntactic disambiguation––
some (Allbritton, 1996; Snedeker & Trueswell, 2003) have 
found that these cues are no longer present when the 
utterance is produced in a disambiguating context, while 
others (Schafer et al, 2000; Schafer et al, 2005) have argued 
that the cues are produced regardless of how much 
information is provided by the context. Thus, the question 
becomes: are the discriminable prosodic features we 
observed automatically and conventionally associated with 
pragmatic intent, or are they deployed strategically for a 
particular audience in a particular context? 
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