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Reading or hearing a sentence such as ‘The little 
old man knocked out the giant wrestler’ demonstrates
the crucial role of syntax in normal language
understanding. Identifying who did what to whom
enables humans to understand the unlikely scenario
that is described here. Thus, syntactic information
helps us combine the words we hear or read in a
particular way such that we can extract the meaning
of sentences (see Box 1). Many regard syntax as a
cognitive module that is separable from other more

general cognitive processes such as memory and
attention [1] and whose properties can be
distinguished from semantic-conceptual information
(‘meaning’) [2]. In this tradition, some theories of
sentence processing propose a separate syntactic
processing mechanism that is insensitive to
nonsyntactic information [3]. However, alternative
views exist [4,5]. Given these competing views of
syntax, one can ask whether there is neurological
evidence in favor of a syntactic processing module [1];
that is, is there a specific area in the brain that is
specialized for syntax alone?

Evidence from brain lesions

Research on the relationship between brain and
language dates back to the mid- to late-1800s when
Paul Broca and Karl Wernicke linked specific lesions
in the brain to specific language deficits known as
aphasia. Broca identified patients with problems in
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speech production, linking this to damage in the left
ventral lateral frontal cortex. Wernicke identified
patients with comprehension problems associated
with damage in the left posterior temporal cortex. 
A century later, studies in these types of patients
provided evidence in favor of the idea that there is a
specialized brain system for syntax. Broca’s aphasics
typically produce halted speech, omitting inflections

and words with syntactic functions such as ‘the’, 
‘of’, or ‘is’. In addition, they are impaired when
comprehending so-called reversible passives such as
‘The dog was chased by the cat’, which can only be
interpreted correctly by relying on syntactic
information [6]. Broca’s patients are therefore said to
have syntactic deficits. Wernicke’s aphasics typically
show a complementary pattern of deficits: they
produce fluent and grammatical, although
contentless, speech. In addition, it has been shown
that they make use of syntactic information in
comprehension [7]. This double dissociation has been
taken as evidence for the idea that brain damage can
affect syntax selectively, indicating that certain brain
regions are specialized for syntactic processing. But
which brain regions are specific for syntactic
processing? Because Broca’s aphasia has been
typically associated with damage involving Broca’s
area [left inferior frontal cortex, Brodmann areas
(BA) 44/45; see Fig. 1], an area that is generally
spared in Wernicke’s aphasia, it was thought that
Broca’s area was the seat of syntax.

However, recent insights from aphasia research
lead to different conclusions. First, lesions in Broca’s
area are neither sufficient nor necessary to induce
syntactic deficits. Dronkers et al. [8] reported that
patients who scored low on morphosyntactic tests did
not have a common lesion in Broca’s area but rather
in the left anterior temporal lobe (anterior BA 22).
This area was spared for patients who did not show
severe morphosyntactic deficits. Moreover, some
patients with damage in Broca’s area did not show
severe morphosyntactic deficits [8]. Second, 
Broca’s aphasics do not completely lack knowledge 
of syntax. They are able to judge correctly the
grammaticality of certain sentence structures [9].
However, complex sentence structures that involve
non-canonical word order such as ‘Which dog did the

When reading or listening to sentences, we use syntactic information,
among other types of information [a], to determine the meaning of a
sentence (‘Who did what to whom?’). Syntactic processes and
information used in sentence comprehension include the following:
• Structure building: combining words into larger units (phrases,

clauses) on the basis of word category information (e.g. the is a
determiner, cat a noun) and grammar rules (‘the cat ’ is a legal phrase
in English whereas ‘cat the’ is not);

• Checking agreement: for instance, in English the verb needs to agree
in number and person with the subject; in German, noun phrases need
to be marked for case. To illustrate the importance of these inflectional
features in comprehension, a phrase such as ‘the daughters of the
colonel who were killed ’ means something different from ‘the
daughters of the colonel who was killed ’.

• Mapping thematic roles: such as agent (‘doer’) and patient (‘do-ee’)
onto certain positions in the sentence. For instance, ‘John loves Mary ’
means something different from ‘Mary loves John’. This mapping 
of roles is not always straightforward: the agent does not always 
come before the patient. For instance, in ‘the dog was chased by 
the cat ’, the agent (‘chaser’) is the cat and the patient (‘chasee’) is 
the dog.

• Complexity: in this article we take the view that a sentence is more
complex if the order of the noun phrases that receive the thematic

roles (or, simply put, word order) is non-canonical, that is, deviates
from the agent-before-patient order. Sentences such as ‘the dog was
chased by the cat ’ are more complex in this view than ‘the cat chased
the dog’, and clauses such as ‘the reporter who the senator attacked ’
are more complex than ‘the senator who attacked the reporter ’. A
common assumption is that the sentence processor reconstructs the
original agent-before-patient order in clauses with non-canonical
order by postulating an empty element in the original position of the
patient. Hence, patient-before-agent sentences involve an additional
syntactic operation. In addition, patient-before-agent sentences
impose a larger burden on working memory, because the first noun
phrase (corresponding to the eventual patient) cannot be syntactically
and thematically integrated until the verb is encountered, and must 
be retained in working memory until that point [a]. However, for
alternative views of complexity and working memory involvement,
see Ref. [b].
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Box 1. Syntactic processes and information
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Fig. 1. Brodmann’s areas.
Schematic overview of
the left lateral and medial
surface of the brain, with
Brodmann’s areas
indicated. Broca’s area is
shown in green,
Wernicke’s area in red.
Reprinted with
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cat chase?’ often do provide a challenge (see Box 1).
Although controversial [10], these observations
suggest that if Broca’s aphasics have a syntactic
deficit, it is restricted to this type of complex sentence
structure [11]. Third, Broca’s aphasics also exhibit
semantic deficits [12], which suggests that the
damaged areas are not unique for syntax. Finally,
aphasia need not be a knowledge deficit but can 
also be interpreted as a processing deficit [13,14]. 
In this view, the problems of Broca’s aphasics with
syntax are a result of a temporal processing deficit 
in activating or integrating information, or a 
shortage of resources needed for these processes. 
The brain areas that are damaged in Broca’s aphasics
therefore need not be the areas where syntactic
knowledge is stored.

The view that Broca’s area is not the seat of 
syntax is further supported by recent studies that
have used functional imaging techniques with
healthy volunteers to investigate the neural
substrates of syntax. In the following, we review 
PET and fMRI studies [15] aimed at isolating areas
involved in syntactic processing during sentence
comprehension. For sentence production studies 
see Refs [16,17].

Neuroimaging studies of syntactic processing

To date, almost all neuroimaging studies of syntax
have relied on the assumption of ‘pure insertion’. That
is, researchers have tried to identify the optimal
contrast between a set of two or more conditions that
are designed to differ only with respect to the
process(es) of interest. There are some inherent
problems with this logic [18] but nevertheless such
research has led to some interesting results that can
point to the brain areas involved in syntactic
processing. The brain imaging studies that are
reviewed in this article have tried to isolate syntactic
aspects of language using four types of contrast: 
(1) by comparing syntactically complex sentences 
to simple sentences; (2) by comparing sentences to
lists of unrelated words; (3) by comparing sentences
containing pseudowords (e.g. ‘Jabberwocky’) or
senseless sentences (‘syntactic prose’) to rest
conditions or normal sentences; and (4) by comparing
sentences with a syntactic violation versus sentences
without. It is important to bear in mind that often not
all active areas in the brain can be detected. First,
fMRI is limited by artifacts caused by air in the
sinuses and ear cavities, which can make it difficult to
detect activation, especially in the anterior and
medial temporal areas and orbitofrontal cortex.
Second, some studies restrict their analyses to
predefined regions of interest (ROIs) to test a priori
predictions. This precludes the detection of activity in
other areas of the brain that might be involved in the
process of interest.

Complex versus simple sentences
The first approach to isolate syntactic processing is to
compare complex with simple sentences (Box 1). A
comparison that has often been used is that between
(complex) object relatives, such as ‘The reporter who
the senator attacked admitted the error’, and (simple)
subject relatives, such as ‘The reporter who attacked
the senator admitted the error’. The assumption is
that the complex conditions involve additional
syntactic operations (reconstruction of the canonical
word order), hence the areas that are activated to a
higher extent in the complex compared with the
simple condition are probably the sites where
syntactic processing takes place. Figure 2 shows the
results for the complex versus simple contrast (black
symbols) and for a study in which volunteers were
asked to say whether two syntactically different
sentences had the same meaning, a task that can be
assumed to involve a reconstruction of the canonical
word order (red symbol). In most studies, enhanced
activity is found in Broca’s area (left BA 44/45),
sometimes extending to BA 47, 6 and 9. Additional
activation is occasionally found in the left or bilateral
superior and middle temporal gyri (BA 21,22), left
angular/supramarginal gyri (BA 39,40), and
cingulate gyrus (BA 23,24,31,32).

Although left BA 44 and 45 are consistently
activated for complex versus easy sentences, this does
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Fig. 2. Complex versus simple sentences. Centers of activation for reading or listening to complex
versus simple sentences (black symbols); for making a same/different judgment for syntactically
different sentences (red symbol); and for processing sentences with long versus short dependencies
(white symbols). In this and following figures, the dotted circle includes activations in Broca’s area.
Centers of activation are projected on the left lateral, left medial, right lateral, and right medial surface
of the brain, using Talairach coordinates [56]. Centers of activation are considered lateral if the
absolute value of the x-coordinate is larger than 12 mm, and medial for x equal to or smaller than
12 mm. When the x-value is 0 mm, the center of activation is projected on the left medial surface.
When no coordinates are provided in the report, the coordinates are estimated on the basis of the
information available (‘est.’). Studies using a region of interest analysis are indicated with ‘roi’. Key to
symbols: � [57] exp. 1; � [58]; + [59]; �, � [22]; × [19]; * [24]; �, � [21]; - [53] (roi); – [42] (roi, est.); 
� [20] (roi, est.); � [60] (est.); � [26]. Both complexity and length manipulations systematically lead to
increased activation in the left inferior frontal cortex (BA 44,45), suggesting that this area is involved in
increased memory or processing load during sentence processing.
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not mean that syntactic processing resides in Broca’s
area. As mentioned in Box 1, complex conditions differ
from simple not only in terms of syntactic operations
(reconstructing the canonical word order) but also in
terms of memory load (keeping nonintegrated
material active while processing other words).
Support for the view that Broca’s area is implicated in
increasing memory or processing load rather than in
reconstructing the canonical word order is the finding
that Broca’s area becomes increasingly active when
sentences contain ambiguous words [19], when
sentences with non-canonical order contain low-
frequency words [20], or when some words need to be

retained in working memory before they can be
syntactically and semantically integrated in the
structure [21,22] (white symbols in Fig. 2), even
though the word order is the same as in the
comparison condition. This suggests that Broca’s area
is not unique for syntactic processing but is
additionally activated when processing load increases
because of lexical or other factors [23,24].

Sentences versus word lists
The contrast between complex and simple sentences
is an attractive one, because it is well controlled in
many respects. However, this particular feature
might also mask the activation of brain areas
involved in syntactic processing, because both
conditions share a large number of syntactic
operations. Hence, areas that are commonly involved
might be canceled out in this comparison. Comparing
sentences (containing a syntactic structure) with lists
of unrelated words (no syntactic structure) is a
contrast that does not share many syntactic
operations, and might therefore reveal more of the
brain areas implied in the syntactic processes
mentioned in Box 1. Figure 3 shows the results for
this contrast. Unlike the complex versus simple
contrast, Broca’s area is not significantly activated in
most studies. One exception is the frontal activation
found in the Bottini et al. study [25] (indicated in
Fig. 3 by white triangles). However, this activation
might be due partly to the different tasks used for the
sentence and the word-list conditions in this study,
and to the inclusion of implausible sentences [26,27].
Note that in most studies the sentences were fairly
simple in structure. The absence of a strong
activation in Broca’s area therefore supports the view
that this area is not necessarily involved in syntactic
operations but only comes into play when the
processing load increases.

An increased activation for sentences versus word
lists is found in the anterior parts of the temporal
lobe, including the temporal pole (BA 38), often
bilaterally. This brain region has also been found to be
active when sentences are compared with a rest
condition [27–30] or a non-word control [30–33]. 
This area corresponds roughly to the area that is
damaged in patients with morphosyntactic
problems [8]. In addition, activation for sentences
versus words is found in the superior and middle
temporal gyri (BA 22 and 21).

Jabberwocky and syntactic prose
The contrast reviewed earlier is not optimal because
sentences differ from word lists not only with respect
to syntactic structure but also concerning semantic
operations, among other things. A third approach is to
reduce semantic processing by using ‘Jabberwocky’or
‘syntactic prose’ (see Fig. 4 for results). Jabberwocky
(based on the poem by Lewis Carroll) consists of
grammatically correct sentences in which nouns,
verbs and adjectives are replaced by pseudowords,
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Fig. 3. Sentences versus words. Activation for reading or listening to sentences versus word lists. 
� [19] passive reading; � [27] passive reading; � [36] acceptability judgment; � [34] Jabberwocky and
normal speech, structure judgment task (roi, est. – see Fig. 2 legend); � [25] sentence plausibility task
versus lexical decision in word lists. Compared with word lists, processing sentences does not lead to
an increase in the left inferior frontal cortex, except in one study that used different tasks for the two
conditions [25]. In general, processing sentences versus words leads to an increased activation in the
anterior, superior, and middle areas of the temporal lobe (BA 38,21,22).
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Fig. 4. Jabberwocky and syntactic prose. Activation listening to grammatical Jabberwocky/syntactic
prose. � [34], areas where processing Jabberwocky versus a pseudo-word list shows greater
activation than processing normal speech versus a word list (roi, est. – see Fig. 2 legend); � [28]
Jabberwocky versus rest (roi, est.); � [28] syntactic prose versus rest (roi, est.). Processing
Jabberwocky/syntactic prose activates anterior and posterior temporal areas. The activation in the
inferior frontal cortex could be due to task demands (see text).
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that is letter strings that are phonologically and
orthographically legal in the language under
investigation but do not have any meaning, such as
‘The mumphy folofel fonged the apole trecon’ [34]. In
syntactic prose, existing words are used to construct
grammatically correct but nonsensical sentences, such
as ‘The infuriated water grabbed the justified dream’.
The areas that would be commonly activated for
Jabberwocky/syntactic prose and normal sentences
compared with a word list can thus be said to subserve
syntax. In addition, Jabberwocky/syntactic prose
might activate some of those areas more than normal
prose because Jabberwocky and syntactic prose lack
semantic cues and, hence, might engage the syntactic
system to a greater extent, especially those processes
dealing with word order and inflection (Box 1).
Friederici et al. [34] found such an activation pattern
in the posterior superior temporal sulcus (posterior
BA 22,41/42) when comparing Jabberwocky with
normal prose. In addition, some activation was found
in the anterior superior temporal sulcus (anterior
BA 38,22). This latter area was also activated in a
different study that contrasted Jabberwocky and
syntactic prose with a rest condition [28].
Furthermore, a medial part of Broca’s area was
bilaterally activated for Jabberwocky compared with
normal sentences, lists of real words, and lists of
pseudowords [34]. However, because there was no
difference between the latter three conditions in this
area, and no left frontal activation was found for either

Jabberwocky or syntactic prose compared with a rest
condition in the study by Mazoyer et al. [28], it might
be that the activation of Broca’s area in the Friederici
et al. study is due to task demands rather than to
syntactic processing per se.

Syntactic violations
A fourth approach to isolate syntactic processes is to
compare sentences containing syntactic violations
(e.g. ‘Trees can grew’ [35]) with correct sentences and
with sentences containing different kinds of violation
(e.g. semantic violations such as ‘Trees can eat’ [35–37]
or spelling errors [38]). The assumption is that
syntactic violations will additionally activate areas
that are involved in syntactic processing because
normal operations such as structure building and
agreement checking (Box 1) are disrupted, and extra
attention is drawn to these aspects of syntax. In
addition, this approach is highly validated by
research using event-related potentials (ERPs), in
which different brain responses have been found for
semantic and syntactic violations [5,39].

Results from studies using syntactic violations 
are shown in Fig. 5 (black, blue, and green symbols).
With only one exception [38], syntactically anomalous
sentences generally do not activate Broca’s area
compared with correct sentences or sentences
containing other violations. Occasionally, more
superior frontal activity (BA 6,8) is found for syntactic
than for other errors [35,37,40], but an increased
activation in these areas has been reported for
semantic violations as well [35,37]. As one can also 
see in Fig. 5, semantic violations lead to a more
widespread activation (pink and red symbols).
However, syntactic errors activate frontal areas to a
larger extent than posterior (temporal) areas,
whereas no such frontal-posterior difference, or a
greater involvement of posterior areas, is seen for
semantic or spelling errors [35,37,38].

One problem with these studies is that syntactic
violations often also have consequences for the
semantic interpretation of the sentence. The
similarity in activation between semantic and
syntactic errors is therefore not surprising. One way
to avoid this problem is to use Jabberwocky. In one
study volunteers were asked to detect syntactic
versus other (phonotactic, orthographic) violations in
Jabberwocky [41]. In this study, activity was seen in
right BA 44 and syntactic errors in left BA 45.
However, in another study in which people were
asked to repeat or correct ungrammatical
Jabberwocky sentences [17], only the left middle
frontal gyrus (BA 9) was activated. The right BA 44
was active for all conditions involving (syntactic or
nonsyntactic) error detection, suggesting that this
area is not uniquely involved in syntactic processing.

Where is syntax in the brain?

Is there a specific area in the brain that is 
specialized for syntax alone? The neuroimaging
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Fig. 5. Syntactic and semantic violations. Activation for reading or listening to sentences containing
syntactic violations versus correct sentences (black symbols), versus sentences containing semantic
violations (blue symbols), and versus other violations (green symbols). Also depicted are activations
to sentences containing semantic or pragmatic violation versus correct sentences (pink symbols), 
and versus sentences containing syntactic violations (red symbols). Circles [36]; Squares [43] 
(roi – see Fig. 2 legend); Triangles [37]; Diamonds [38]; Small squares [40] (roi); Plus signs [35] exp. 1
(roi, est. – see Fig. 2 legend); Asterisks [41] using Jabberwocky; Dashes [17] using Jabberwocky in a
production task. Syntactic violations activate parts of the frontal and temporal cortex. However,
comparable and more widespread activation is found for semantic violations.
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results described earlier correspond with recent
insights from aphasia suggesting that Broca’s area
(BA 44/45) is not necessarily involved in syntactic
processing. Broca’s area is only systematically
activated when processing demands increase due to
working memory demands or task requirements.
Broca’s area is also not the only area involved in
syntax: other areas include the anterior temporal 
lobe (BA 38, and anterior parts of BA 21 and 22) 
and the middle and posterior parts of the superior 
and middle temporal gyri (BA 22,21). Interestingly,
activations are not restricted to the left
hemisphere [28,37,41–43].

Are these areas uniquely activated for syntactic
processing? The answer is no. Each of these areas has
been shown to be activated for tasks involving lists 
of syntactically unconnected words and, in some 
cases even for tasks using non-linguistic materials. 
Broca’s area (BA 44/45) is involved in a wide variety of
tasks using lists of words or syllables, including
semantic tasks [44], phonological tasks [44], and
memory tasks [23], and is also active during music
perception [45]. Similarly, the anterior temporal lobe
has shown sensitivity to semantic priming [46],
categorization [47], and recall [48] of individual 
words, but has also been implicated in processing
multisentence stories versus unconnected
sentences [49]. The middle and posterior temporal
lobe has been systematically implicated in single word
processing, with the upper parts being more involved
in acoustic and phonological processing, and the lower
lateral and medial parts in verbal and nonverbal
conceptual processing [50]. However, the posterior
temporal cortex has also been found to be involved 
in nonverbal temporal predictability [51]. The areas

that were activated for syntactic manipulations are
therefore not uniquely involved in syntactic aspects of
language processing.

Conclusion

Syntactic processing, as investigated by the 
contrasts reviewed here, recruits not one brain 
region but multiple areas that are not each uniquely
involved in syntactic tasks. This is inconsistent 
with a strict modular view of syntactic processing.
However, it remains unclear how modularity might
be instantiated in the brain. One possibility is 
that there is a dissociation at the level of cellular
networks within these areas that cannot currently 
be differentiated with functional imaging techniques.
Another possibility is that although the brain areas
reviewed here are not uniquely involved in syntax,
the interaction among the areas might be uniquely
tied to the nature of the materials and the tasks
employed. Taking the latter stance, we propose that
the different parts of the network are recruited for
different aspects of syntactic processing. The middle
and superior temporal lobes might be involved in
lexical processing and activating the syntactic,
semantic and phonological information associated
with the incoming words [20]; the anterior temporal
lobe might be involved in combining the activated
information or encoding the information for later
use [52]; and Broca’s area might be involved in storing
non-integrated material when processing load
increases [19,23,24]. In addition, an increase in
processing load might feed back to the processing 
of lexical information, causing an increase in
activation in the middle and posterior temporal 
areas [19,20,42] or even recruitment of visual
working memory areas in the occipital lobe to store
information [52,53]. The right hemisphere has a role
in prosody [5], maintenance of multiple analyses in
the case of ambiguity [14], discourse processing [54],
and error detection [17].

Unraveling the exact function of the various parts
and connections of the network and the relation
between linguistic and non-linguistic processes will
clearly remain a challenge for cognitive neuroscience
in the foreseeable future.

Acknowledgements

E.K. is supported by 
JSMF grant 2000-2044,
T.Y.S. is supported by
SES-0074634. We would
like to thank Roberto
Cabeza, Sherry Hubbard
and Ron Mangun.

• How can we further specify the relationship between
specific syntactic operations and certain areas of the
brain and the connections between those brain areas?

• What is the connection of syntax with non-linguistic
processes (e.g. general working memory)?

• Are there individual differences in the brain circuitry 
of syntax?

Questions for future research
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