Derivatives

$$
\begin{aligned}
& \frac{d}{d x}(c)=0(\text { where } c \text { is some constant }) \\
& \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \\
& \frac{d}{d x}(\sin (x))=\cos (x) \\
& \frac{d}{d x}(\cos (x))=-\sin (x) \\
& \frac{d}{d x}(\tan (x))=\sec ^{2}(x) \\
& \frac{d}{d x}(\csc (x))=-\csc (x) * \cot (x) \\
& \frac{d}{d x}(\sec (x))=\sec (x) * \tan (x) \\
& \frac{d}{d x}(\cot (x))=-\csc c^{2}(x) \\
& \frac{d}{d x}\left(e^{x}\right)=e^{x} \\
& \frac{d}{d x}\left(e^{u}\right)=e^{u} * \frac{d u}{d x}(\text { where } u \text { is an arbitrary function }) \\
& \quad(c f(x))^{\prime}=c\left(f^{\prime}(x)\right)(\text { where } \mathrm{c} \text { is a constant }) \\
& \quad(f(x)-g(x))^{\prime}=f^{\prime}(x)-g^{\prime}(x) \\
& \quad \frac{d}{d x}(\ln (x))=\frac{1}{x} \\
& (f+g)^{\prime}=f^{\prime}+g^{\prime} \\
& (f g)^{\prime}=f^{\prime} g+g^{\prime} f \\
& \left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-g^{\prime} f}{g^{2}} \\
& \frac{d}{d x}\left(a^{x}\right)=a^{x} * \ln (a)(\text { where } a \text { is some constant }) \\
& \quad \frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) g^{\prime}(x)
\end{aligned}
$$

(Mostly compiled by Alex Simpkins)

