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2Data Modeling

Suppose you are given some data and you would like to have a model that
preserves properties of the data (e.g. interpoint distances, mean, variance,
higher-order statistics) that you care about but can be easily operated on (e.g.
compared to another dataset).
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A very common approach is to model the data with a probability distribution (fit a
probability distribution to the data). So we will now take an aside to delve into
the basics of probability distributions.



3Probability

Probability theory is the natural way to deal with computations about uncertain
events.

Both brains and computers must deal with uncertain events. Many people argue
that in many problems the brain is performing optimal given the uncertainties that
it has to deal with. “Performing optimally” usually means following the rules of
probability.



4Motivation
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MotivationMotivation
Our world is full of regularities, structure. It is useful for brains to 
learn about these regularities: brains construct models of the world. 
Models allow to correctly interpret ambiguous sensory inputs or even 
allow to predict future events:

Model
Parameters

The World The Learner

World State Projection
Visible
 State Model StateInverse



5Random Variables

Loosely, a random variable is a variable that has many values with different
probabilities

The outcome of a roll of a die is a discrete random variable The height of a
randomly chosen person is a continuous random variable

An event is a set of outcomes (e.g. die roll is odd)



6Probability Notation

P (a) means probability that event a is true

• shorthand for Pr(a=true)

• usually called “probability of a”

more detailed info

e.g the probability of rolling a 6 on a die is 1/6

P(rolling 6) = 1/6

http://en.wikipedia.org/wiki/Probability_theory


7Probability Axioms

• probability of event A, is between zero and one 0 ≤ P (A) ≤ 1

• probability of some event occuing from the entire sample space S is one P (S) = 1

• if events A and B are mutually exclusive, then P (AorB) = P (A) + P (B)



8Example: Rolling two dice

What is the probability of the outcome “getting doubles”?

What is the probability of the event “the sum is less than 5”?



9Interpretation of Probability

frequentist view: relative frequency

P (A) = lim
n−>∞

NA

N

N number of experiments

NA number of experiments where A happened

Bayesian view: degree of belief

“What is the probability that there is life on Mars”



10Bayesian probability

From Wikipedia, the free encyclopedia.

Bayesianism is the philosophical tenet that the mathematical theory of probability
applies to the degree of plausibility of statements, or to the degree of belief of
rational agents in the truth of statements. This is in contrast to frequentism,
which rejects degree-of-belief interpretations of mathematical probability, and
assigns probabilities only to random events according to their relative frequencies
of occurrence. The Bayesian interpretation of probability allows probabilities
assigned to random events, but also allows the assignment of probabilities to any
other kind of statement. Whereas a frequentist and a Bayesian might both assign
probability 1/2 to the event of getting a head when a coin is tossed, a Bayesian
might assign probability 1/2 to personal belief in the proposition that there was
life on Mars a billion years ago, without intending to assert anything about any
relative frequency.



11Conditional Probability

How does one event occuring affect the chance of occurence of another event
occuring.

“What is the probability of voting for Bush, given that you have an IQ of 140?”

Probability of A given B

P (A|B) =
P (A,B)
P (B)



12Jochen’s dice example

What is P(D1=1,D2=2)?

What is P(D1=1 | D2=2)?

What is P(D1=1 | sum is even)?

What is P(D1=1 | sum is 4)?



13Independence

Events A and B are independent iff

P(A,B) = P(A)P(B)

What are the alternate forms?



14Jochen Triesch’s famous pizza slide (modified from B. Warner)
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Venn diagrams in
Pizza form from
B. WarnerFree Pizza!Free Pizza!

What is P(pepperoni) ?
What is P(mushroom) ?
What is P(pepperoni | mushroom) ?
What is P(mushroom | pepperoni) ?
What is P(mushroom, pepperoni) ?

mushroom and pepperoni
events are independent!

Statistical Independence:
P(A,B) = P(A)P(B)

or equivalently:  P(A|B) = P(A)
or equivalently:  P(B|A) = P(B)

Pick slice at random!



15Conditional Independence
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Venn diagrams in
Pizza form from
B. Warner

P(mushroom, anchovy | pepperoni): 1/5 = 3/5 x 1/5 NO!

Conditional
Independence:

P(A,B|C) = P(A|C)P(B|C)

P(mushroom, pepperoni | anchovy): 1/3 = 2/3 x 1/3 NO!
P(anchovy, pepperoni | mushroom): 1/4 = 2/4 x 3/4 NO!

Quiz: come up with pizza that has conditional independence

Are the presence of mushrooms and anchovies independent given pepperoni

P (M |P ) = ?



16Conditional Independence

Jochen Triesch, UC San Diego, http://cogsci.ucsd.edu/~triesch 12

Venn diagrams in
Pizza form from
B. Warner

P(mushroom, anchovy | pepperoni): 1/5 = 3/5 x 1/5 NO!

Conditional
Independence:

P(A,B|C) = P(A|C)P(B|C)

P(mushroom, pepperoni | anchovy): 1/3 = 2/3 x 1/3 NO!
P(anchovy, pepperoni | mushroom): 1/4 = 2/4 x 3/4 NO!

Quiz: come up with pizza that has conditional independence

Are the presence of mushrooms and anchovies independent given pepperoni

P (M |P ) = 3/5



17Conditional Independence

Jochen Triesch, UC San Diego, http://cogsci.ucsd.edu/~triesch 12

Venn diagrams in
Pizza form from
B. Warner

P(mushroom, anchovy | pepperoni): 1/5 = 3/5 x 1/5 NO!

Conditional
Independence:

P(A,B|C) = P(A|C)P(B|C)

P(mushroom, pepperoni | anchovy): 1/3 = 2/3 x 1/3 NO!
P(anchovy, pepperoni | mushroom): 1/4 = 2/4 x 3/4 NO!

Quiz: come up with pizza that has conditional independence

Are the presence of mushrooms and anchovies independent given pepperoni

P (M |P ) = 3/5 P (A|P ) = ?



18Conditional Independence

Jochen Triesch, UC San Diego, http://cogsci.ucsd.edu/~triesch 12

Venn diagrams in
Pizza form from
B. Warner

P(mushroom, anchovy | pepperoni): 1/5 = 3/5 x 1/5 NO!

Conditional
Independence:

P(A,B|C) = P(A|C)P(B|C)

P(mushroom, pepperoni | anchovy): 1/3 = 2/3 x 1/3 NO!
P(anchovy, pepperoni | mushroom): 1/4 = 2/4 x 3/4 NO!

Quiz: come up with pizza that has conditional independence

Are the presence of mushrooms and anchovies independent given pepperoni

P (M |P ) = 3/5 P (A|P ) = 1/5 P (A,M |P ) =?



19Conditional Independence

Jochen Triesch, UC San Diego, http://cogsci.ucsd.edu/~triesch 12

Venn diagrams in
Pizza form from
B. Warner

P(mushroom, anchovy | pepperoni): 1/5 = 3/5 x 1/5 NO!

Conditional
Independence:

P(A,B|C) = P(A|C)P(B|C)

P(mushroom, pepperoni | anchovy): 1/3 = 2/3 x 1/3 NO!
P(anchovy, pepperoni | mushroom): 1/4 = 2/4 x 3/4 NO!

Quiz: come up with pizza that has conditional independence

Are the presence of mushrooms and anchovies independent given pepperoni

P (M |P ) = 3/5 P (A|P ) = 1/5 P (A,M |P ) = 1/5

so P (A,M |P ) is not equal to P (M |P )× P (A|P ) thereform the presence of
mushrooms and anchovies are not conditionally independent (given the presence
of pepperoni).



20Bayes Theorem

P (A,B) = P (A) ∗ P (B|A)



20Bayes Theorem

P (A,B) = P (A) ∗ P (B|A)

= P (B) ∗ P (A|B)



20Bayes Theorem

P (A,B) = P (A) ∗ P (B|A)

= P (B) ∗ P (A|B)

Bayes Theorem

P (A|B) =
P (B|A)P (A)

P (B)

(proof above)



21Bayes Theorem
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TerminologyTerminology
Bayes’ Theorem:

)(
)()|()|(

BP
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posterior probability
likelihood

prior probability

evidence

Note 1: likelihood and prior probability are often much easier to 
measure than posterior probability, so it makes sense to express
the latter as a function of the former.
Note 2: P(B) typically also expressed as function of conditionals 
and priors:

"
!

i
ii

ii
i APABP

APABPBAP
)()|(
)()|()|(

P(B) is often computed as

P (B) =
∑

i

P (B|Ai)P (Ai)

where Ai are all possible disjoint subsets



22Bayes Rule in Biology

Given an image of an animal you have to determine whether the animal is a tiger
or not

P (A = tiger|B = imagei) =
P (B = imagei|A = tiger)P (A = tiger)

P (B = imagei)



23Sample Problem (numbers made up)

The probability that an individual at the airport is a terrorist is 1 in 10 million
(1x10−6) Half the terrorists carry swiss army knifes. 10% of non-terrorists carry
swiss army knifes. What’s the probability that a knife carrier is a terrorist?

P (terr) = .000001 prior probability

P (knife|terr) = .5 likelihood

P (knife| ∼ terr) = .1

compute

P (knife) = P (terr) ∗ P (knife|terr) + P (∼ terr) ∗ P (knife| ∼ terr)

= .1

P (terr|knife) =
P (knife|terr) ∗ P (terr)

P (knife)

= .5 ∗ .000001/.1
= 5 ∗ 10−6



24Continuous probability density

For continuous random variables it does not make sense to talk about the
probability of a particular value (which is equal to 0)

Instead we talk about probability density

p(x) is a probability density over a continuous variable

Pr(x ∈ [a, b]) =
∫ b

a

p(x)dx

e.g. probability density of heights of females



25Bayes Rule revisited

We can still have Bayes rule for continuous random variables. A common case is
when we have different probability densities for different classes (ωj)

P (ωj|x) =
p(x|ωj)P (ωj)

p(x)

• P (ωj) = prior probability of ωj

• p(x) = evidence

• P (ωj|x) = posterior probability of ωj

• p(x|ωj) = likelihood of ωj with respect to x



26Expected Value

Expected value or mean

E(X) =
∑

xp(x)

E(X) =
∫

xp(x)dx



27Variance

V ar(X) = E(X − E(X))2 =
∑

P (X)(X − E(X))2

V ar(X) =
∫

(x− E(x))2p(x)dx



28The Normal Density
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• Central Limit Theorem: sum of a large number of independent random variables
is normally distributed applet

• It’s analytically tractable!

• It’s been well studied

• It has the maximum entropy of all distributions with a given mean and variance

http://www.stat.sc.edu/~west/javahtml/CLT.html


29Univariate normal density

p(x) =
1√
2πσ

e
−(x−µ)2

2σ2

has mean = µ

variance = σ2

has roughly 95% of its area within 2 standard deviations on either side of the
mean (this is relevant for t-tests).



30Standard Normal

Gaussian with mean 0 and variance 1

1√
2πσ2

e
− x2

2σ2



31Multivariate normal density

p(~x) =
1

(2π)
n
2 (det Σ)

1
2

e−
(x−µ)TΣ−1(x−µ)

2

Contours of constant density are defined by x such that

(x− µ)′Σ−1(x− µ) = c2

Ellipses are centered at µ with axes ±
√

(λi)ei where λi and ei are the eigenvalues
and eigenvectors of Σ (this will be relevant for PCA and related algorithms)

• Linear combinations of the components of X are normally distributed

• All subsets of the components of X are normally distributed

• Zero covariance implies that the corresponding components are independent

• The conditional distributions of the components are multivariate normal



32Multivariate Gaussians




