1 Algebra

Simultaneous Equations Solve for x and y (What are the values of x and y):
$x+2 y=6$
$\mathrm{x}-\mathrm{y}=3$

Summation What is the value of the following given $x=j+1$.

$$
\sum_{i=0}^{2} x^{i}
$$

Summation Calculate the following:

$$
\sum_{k=1}^{5}(3 k-2)
$$

Logarithms TRUE or FALSE $\log (\mathrm{a} / \mathrm{b})=\log (\mathrm{a})-\log (\mathrm{b})$
Logarithms TRUE or FALSE $\log (\mathrm{a} / \mathrm{b})=\log (\mathrm{a}) / \log (\mathrm{b})$
Logarithms TRUE or FALSE $\log (\mathrm{a}+\mathrm{b})=\log (\mathrm{a})+\log (\mathrm{b})$
Logarithms TRUE or FALSE $\log \left(a^{b}\right)=\mathrm{b}^{*} \log (\mathrm{a})$
Lines Draw the line $4 x+2 y=4$.
Lines Answer the following, given that $y=a x^{2}+b x$

- If $a=2$, is y a linear function of x ?
- If $a=0$, is y a linear function of x ?

Lines Write the equation for a line with slope 5 and y-intercept 2 .
Lines A line passes through the points $(2,5)$ and $(6,-4)$. What is the equation of this line?

Exponents Which is greater, the value of $\left(99^{900}\right)^{3}$ or $\left(99^{900}\right) *\left(99^{3}\right)$?

Factoring Factor $x^{2}-64$ into two terms that are linear in x .
Factoring How many unique solutions (roots) could an equation of the form $a x^{3}+b x^{2}+c$ have, where a, b, and c are real numbers?

Functions Explain why $y^{2}=x-2$ is not a function.

2 Calculus

Differentiation What are the derivatives of the following equations with respect to x ?

- $3 x^{2}$
- e^{-x}
- $\cos \left(2 x^{2}\right)$
- $\sin \left(3 x^{2}\right)$

Chain Rule Recall that $\frac{d}{d x} \sin x=\cos x$. Find $\frac{d}{d x} h(x)$ when:

$$
h(x)=\sin x^{2}
$$

Chain Rule Differentiate $y=\ln \left(\cos ^{5}\left(3 x^{4}\right)\right)$.
Differentiation Determine $\frac{d y}{d x}$ given that $y=\sin (3 x+4 y)$.
Partial Derivatives Let $f(x, y, z)=3 x^{2}+2 y+e^{\sin (\log (z!))}$. What is the partial derivative of f with respect to y (written: $\frac{\partial}{\partial y} f(x, y, z)$)?

Partial Derivatives For $f=3 x^{2}+x y^{2}+\frac{1}{y}$, find (a) $\frac{d f}{d x}$ (b) $\frac{d f}{d y}$
Integral(conceptual) The equation $f(x)=\sqrt{9-x^{2}}$ represents a semicircle of radius 3 for $-3 \leq x \leq 3$. What is the integral of $f(x)$ over the region $-3 \leq x \leq 3$? (Hint: the area of a whole circle is $\pi * r^{2}$.

Integral What is the integral of $5 x-x^{5}+8$?
Integral What is the integral of $e^{-3 x}$?
Integral Integrate x^{3} from 2 to 6 .

3 Stats and Probability

Statistics Complete the questions below given the following set of values: $-3,-1,1,3,5$.
a Find the mean (average) value of this set and call it μ.
b Solve the following:

$$
\begin{gathered}
\text { i }(\mu-(-3))^{2}=? \\
\text { ii }(\mu-(-1))^{2}=? \\
\text { iii }(\mu-(1))^{2}=? \\
\text { iv }(\mu-(3))^{2}=? \\
\text { v }(\mu-(5))^{2}=?
\end{gathered}
$$

c Take the average of the five values above and refer to it as σ^{2} (the notation for variance). $\sigma^{2}=$?
d What is the standard deviation?
Coin flips You flip a fair coin 5 times and all 5 times it lands heads. What is the probability that the sixth flip will land tails?

Combinatorics What is the value of $\binom{6}{4}$?
Expected Value You are in a casino (obviously you are over age 21), and you see two games. In one, you have a 40% chance of winning $\$ 50$, and a 60% chance of losing $\$ 20$. In the other you have a 90% chance of losing $\$ 1$ and a 10% chance of winning $\$ 220$. Which game will win you more money? Now imagine that you have only a budget of $\$ 40$ to spend on gambling, after which you're wiped out and have to go home. Which game would you rather play? Why?

Expected Value Imagine you're running a black-market casino at midnight on Thursdays in the alley behind your apartment. The only game you have is as follows. The player pays you x dollars, rolls a fair six-sided die, and is given the number of dollars that correspond to the number shown on the die (six dollars if the player rolls a six, etc). If you want to break even in the long run, what should you set x to be?

T-test (select the correct choice from each set of options) To perform a Ttest, you are assuming that your data are distributed according to a
(T / Gaussian / Poission / Binomial) distribution with (known / unknown) mean and unknown variance. (BONUS: If the variance of the data distribution from 1 was somehow known (but the mean was not), what test would you perform instead?)

T-test Dario measures blood pressures in 100 people. He then gives them a drug and measures their blood pressure again (from the same people). He wants to see if the drug influences blood pressure. Should he use a paired or non-paired test?

4 Programming

Order of Operations Assuming that multiplication and division have precedence (as is common in programming languages), what is the value of a at the end of the programming fragment?
$\mathrm{a}=6+3-10 / 5$

For Loops Using any reasonable pseudocode, write a loop to add the numbers 1 through 100 and store in the variable sum.

For Loops What is the value of j at the end of the program fragment below? (the notation for $\mathrm{i}=1: 10$ means the same thing as $\operatorname{for}(i=1 ; i<=$ $10 ; i++$) or in plain language i will start with the value 1 , each time through the loop i will be incremented and the looping will stop after i goes above 10 .
for $\mathrm{i}=1: 10$
$j=i+1$
end
For Loops What is the value of x at the end of the program fragment below?

```
x = 0
for i=1:10
    x = x + 2
end
```

For Loops What does the following pseudocode output?

```
n = 5
for i = 1:n
        if i== 2 or 5
            print "0"
        n=n +1
    else
        print "1"
    enid=i+1
end
```

Nested For Loops After running the following pseudocode, what is the value of the variable x ?
$\mathrm{x}=0$
for $\mathrm{i}=1: 5$
$\mathrm{x}=\mathrm{x}-1$
for $\mathrm{j}=1: 3$
$\mathrm{x}=\mathrm{x}+2$
end
end

Variables What are the values of a and b after running the following code?

$$
\begin{aligned}
& \mathrm{a}=2 \\
& \mathrm{~b}=3 \\
& \mathrm{a}=\mathrm{a}-\mathrm{b} \\
& \mathrm{~b}=\mathrm{b}+\mathrm{a} \\
& \mathrm{a}=\mathrm{b}-\mathrm{a}
\end{aligned}
$$

Variables List the variables that will be in your memory after running the following program.
$a=6$
b = TRUE
if $\mathrm{b}=$ FALSE
$\mathrm{c}=10$
end
if $\mathrm{a}<5$
$\mathrm{d}=\mathrm{a}^{\wedge} 2$
else
$\mathrm{d}=\mathrm{a}^{\wedge} 3$
end

Variables In the following program, the variables dario and walter have the values of 123 and 312 , respectively. Write some lines of pseudocode to swap the values of the variables (the \# symbol indicates that the line is a comment and is ignored during program execution):
dario $=123$
walter $=312$
\# insert pseudocode below
end
Conditionals After running the following pseudocode, what is the value of the variable t ($>$ is the greater than operator)?
$\mathrm{t}=5$
if $(\mathrm{t}>4)$
$t=t+1$
end
if $(\mathrm{t}>7$)
$t=t+1$
end
if $(\mathrm{t}>6)$
$t=3$
end

