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Abstract. It is well-known that Hebbian 
synapses, with appropriate weight normal- 
ization, extract the first principal component 
of the input patterns (Oja 1982). Anti-Hebb 
rules have been used in combination with 
Hebb rules to extract additional principal 
components or generate sparse codes (e.g., 
Rubner and Schulten 1990; FoldiAk 1990). 
Here we show that the simple anti-Hebbian 
synapses alone can support an important 
computational function: solving simultane- 
ous linear equations. During repetitive learn- 
ing with a simple anti-Hebb rule, the weights 
onto an output unit always converge to  the 
exact solution of the linear equations whose 
coefficients correspond to the input patterns 
and whose constant terms correspond to the 
biases, provided that the solution exists. If 
there are more equations than unknowns and 
no solution exists, the weights approach the 
values obtained by using the Moore-Penrose 
generalized inverse (pseudoinverse). N o  ex- 
plicit matrix inversion is involved and there 
is no need to  normalize weights. Mathemati- 
cally, the anti-Hebb rule may be regarded as 
an iterative algorithm for learning a special 
case of the linear associative mapping (Koho- 
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nen 1989; Oja 1979). Since solving systems 
of linear equations is a very basic computa- 
tional problem to which many other prob- 
lems are often reduced., our interpretation 
suggests a potentially general computational 
role for the anti-Hebbiam synapses and a cer- 
tain type of long-term depression (LTD). 

Suppose we have n input variables 
a l ,  . . . , a,, and a linea-r unit whose output 
y is the weighted sum 

n 

i= 1 

where variable b is the lbias, or an additional 
input variable with constant weight -1. The 
weights are modified according to the simple 
anti-Hebb rule 

where the learning rate E > 0 is a small con- 
stant. The weight increments of the anti- 
Hebb rule presented here become identical 
to those of the Widrow-Hoff delta rule for 
supervised learning if the bias is equal to 
the “desired output”. Nonetheless, the ac- 
tual output of the linear unit has different 
values in the two cases whenever the bias 
is nonzero. If the weight for the bias term 
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(= -1 in our case) is also modified a,ccord- with j = 1,. . . , m. When these values are 
ing to the anti-Mebb rule, the system still can presented repeatedly t o  the system, the final 
solve linear equations. But in the overdeter- weights solve the simultaneous equations 
mined cases, explicit weight normalization is 

altogether, and the result is the minor com- 

instead of the one obtained with the pseu- 
doinverse. 

needed to prevent all weights from vanishing 

ponent (cf. Oja 1992) of the input patterns 

A w = b  
or 
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Figure 1: The cumulative probability for the 
weights to  reach the solution within itera- 
tion number N during anti-Hebbian learn- 
ing. Here we use EN instead of N because 
although it takes a larger iteration number 
N to  stop for a smaller learning rate E ,  the 
product E N  is basically a constant if E is 
small. In the simulation E = 0.01. All co- 
efficients and constants of the linear equa- 
tions ( m  = n) are drawn from a uniform 
distribution between -1 and 1. Each curve 
(n = 4, 20, or 100) is based on the data 
from 250 repetitive trials, with the initial 
weights randomly chosen between -0.05 and 
0.05. The iteration stops if for all weights 
Jw; - xi1 < J z j J / n )  x lo%, where 
( ~ 1 , .  . . , z,) is the exact solution. (Numer- 
ical simulation performed mainly by G. G.) 

Suppose the input variables only have m 
sets of distinct values: a l ( j ) ,  . . . , a,( j ) ,  b ( j ) ,  

More precisely, when m = n, we have w 3 
A-lb, and when m > n, we have w -+ Atb 
where At = (ATA)-'AT is the pseudoin- 
verse. In the degenerate cases, the weight 
vector will converge to one of the possible 
solutions, depending on the initial weights. 
A noteworthy special case is the learning 
of invariants (cf. Schraudolph and Sejnowski 
1992): when the biases are all equal [ b ( j )  E 
const.], the system tries t o  find an invariant 
linear combination of the inputs, which is 
similar to  what a differential anti-Hebb rule 
would do (Mitchison 1991). After learning, 
the output unit becomes a linear filter which, 
roughly speaking, gives a large response y 
only when the input pattern is not a linear 
combination of the training patterns, which 
is similar to  Kohonen's novelty detector (Ko- 
honen 1989). 

Rewriting the weight update equation in 
terms of inputs, it can be seen that in the 
slow learning limit ( E  ---f O ) ,  the time evolu- 
tion of the weight vector is governed by the 
average of all the inputs: 

W = -ATAw + ATb 

This is a gradient descent procedure for min- 
imizing the function E = $IIAw - b1I2, be- 
cause the right-hand side of the equation 
equals - d E / d w .  When W = 0 ,  the final 
weight vector is the general solution Atb. 
In nondegenerate cases, this is identical to  
A-'b. The convergence of the discrete iter- 
ation process with an adaptive learning rate 
was studied in general terms by Oja (1979). 
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For random inputs, the weights converge 
to the solution at various rates. The con- 
vergence is typically slower as the number 
of variables increases (Fig. 1). The anti- 
Hebbian algorithm is less efficient than stan- 
dard linear algebra methods or iterative al- 
gorithms that reach the exact solution in a 
finite number of steps (e.g., Kohonen 1989, 
Forbes and Mansfield 1990), because it ap- 
proaches the solution only asymptotically. 
The importance of this algorithm lies in its 
great simplicity (as compared with complex 
“hard-wired” neural network approaches, cf. 
Cichocki and Unbehauen 1992) and in its 
possible biological relevance. An effective 
anti-Hebb rule could arise from Hebbian- 
type plasticity with the help of inhibitory in- 
terneurons; or anti-Hebbian synapses them- 
selves may exist in the brain. In fact, long- 
term depression (LTD) in the cerebellum (It0 
1989) and in the basal ganglia (Calabresi et 
al. 1992) can be regarded as essentially anti- 
Hebbian, because in both cases excitatory 
synapses are weakened by simultaneous pre- 
and post-synaptic activations. Of course, the 
linear neuron model is only a very crude ap- 
proximation of the real situation. Yet this 
simplified model together with a simple anti- 
Hebb rule is sufficient to solve arbitrary sys- 
tems of linear equations - a basic task for 
numerical computation, and perhaps for cer- 
tain neural subsystems. 
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