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Abstract
The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure,
function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are
homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however,
has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin
mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann
map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but
are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at
the hand–face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using
large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body
parts are an important organizing principle, similar to the distinction between sensory and motor processing.
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Introduction
The division within the human central sulcus between somato-
sensory cortex for sensation and motor cortex for action is per-
haps one of the most deep-seated concepts in neuroscience

and constitutes a starting point for thinking about structure,
connectivity, function, and plasticity.

Early neuroanatomists such as Flechsig (1920) suggested a
modification of thismodel. Flechsig’s (1920) extensive postmortem
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studies of cortical myelination identified separable segments
within somatosensory cortex area 3b and motor cortex area 4 that
he related to specific representations of the body. Because these
segments were separated by sharp borders and orthogonal to the
classical anterior–posterior division of sensorimotor cortex,
Flechsig separated area 3b and area 4 into multiple subfields—in
contrast to Brodmann (1909), who suggested that both areas were
homogenous. Whereas the Brodmann atlas has since received
widespread attention and constitutes a starting point for under-
standing the sensorimotor system, Flechsig’s topographic parcel-
lationmodel has remained largely overlooked to this day.

Here, we investigated the hypothesis that the human sen-
sorimotor cortex is ordered according to a topographic parcella-
tion scheme as originally suggested by Flechsig. We applied
recent advances in in-vivo human brain parcellation (Glasser
and Van Essen 2011; Sereno et al. 2013; Lutti et al. 2014; Stüber
et al. 2014; Dinse et al. 2015; Tardif et al. 2015), and combined
them with functional topographic maps, and intrinsic signal
fluctuations as obtained during the resting state (Biswal et al.
1995; Smith et al. 2009) to investigate the relationship between
cortical myeloarchitectonic variations, topographic field bound-
aries between hand and face representations in area 3b and
area 4, and intrinsic cortical activity in vivo.

We demonstrate that major myeloarchitectonic borders exist
not only between area 3b and area 4 (i.e., between sensory and
motor cortices), but also between the representations of the
hand and the face in both of these areas, essentially dividing
them into (at least) 4 distinct cortical fields. The robustness of
our finding across areas (area 3b and area 4), imaging modalities
(T1-based and T2*-based), field strengths (3 T and 7 T), myelin
mapping techniques (ratio-based and quantitative), physio-
logical parameters (activation and connectivity patterns), and
data sets (large-cohort data N > 400, individual data sets), as well
as the cortical layer-specificity of the myelin reductions show
that cortical microstructure varies at boundaries between body
parts just as prominently as it does between sensory and motor
cortices—confirming the basic assumptions of a topographic par-
cellationmodel in humans.

Materials and Methods
Large-Scale Analyses

Participants
To investigate the relation between topographic maps and cor-
tical myelination during active motor movements and during
rest, we first used cortical myelin maps and functional imaging
data as provided by the Human Connectome Project (HCP, see
below for single subject data acquired at 7T). Myelin maps and
hand/face functional activity data were available for N = 440 par-
ticipants. All participants were healthy and none of them suffered
any psychiatric or neurological disorder. All data are provided
open-source (http://www.humanconnectome.org/documentation/
S500).

MRI Data Acquisition
Structural HCP data were acquired with a 32-channel head coil
on a 3T Siemens Skyra. Two 0.7-mm isotropic T1-weighted
(T1w) MPRAGE scans (256 slices, sagittal orientation, AP phase
encoding direction, field of view [FOV] read: 224mm, FOV phase:
100%, time repetition [TR] = 2400ms, time echo [TE] = 2.14ms,
time to inversion [TI] = 1000ms, and flip angle [FA] = 8°) and two
0.7mm isotropic T2w scans (same FOV and slices as in the T1w

scan, TR = 3200ms, and TE = 565ms) were used per subject
(Glasser et al. 2013). In the T2w images, TE was lengthened to
improve intracortical contrast for myelin detection (Glasser et al.
2013). As part of the HCP pipeline, only structural scans rated as
“good” or “excellent” are released (Van Essen et al. 2013).

Functional Data Acquisition
Functional HCP data were acquired with a 32-channel head coil
on a 3 T Siemens Skyra. Whole-brain EPI data had an isotropic
voxel resolution of 2mm. A relatively small TR of 720ms was
used to increase the sensitivity to detect resting state signal
fluctuations (Smith, Beckmann, et al. 2013). The imaging para-
meters were TE = 33.1ms, FA = 52°, and FOV = 208 × 180mm.
Of note, 72 slices were acquired using a multiband acceleration
factor of 8. Four 15-min resting state fMRI runs per subject were
acquired in 2 separate sessions. In the first session, 15-min
right-to-left phase encoding was followed by 15-min left-to-
right phase encoding; in the second session, the order was
reversed. Interleaved slice-acquisition was applied. In addition,
a single-band reference image was acquired at the beginning
(FOV read direction = 180mm, FOV phase encoding direction =
180mm, FOV inferior–superior direction = 144mm, 72 slices,
and interleaved slice ordering).

Task Description
During the resting state scans, participants were lying in the
scanner with eyes open. They were asked to think about noth-
ing in particular and not to fall asleep. After 2 resting state
scans (15min each), participants proceeded with task-based
imaging experiments. For our analyses, we used the resting
state scans of 2 imaging sessions, that is, four 15-min scans.

During the functional mapping paradigm, participants were
presented with randomized written instructions that indicated
to them which movement to execute (i.e., “Hand,” “Foot,” and
“Tongue”). Instructions were presented for 3 s. After this, move-
ment execution started and continued for 12 s. Participants were
presented with a fixation cross during movement execution.
Fifteen-second rest conditions separated successive blocks. The
experiment was tested in 2 runs, with 2 tongue movements and
4 hand movements (2 left and 2 right), and 4 foot movements (2
left and 2 right) per run (Yeo et al. 2011). The tongue movements
activated lip, lower face, and tongue representations. Lip and
lower face representations are superior to tongue representa-
tions (Zeharia et al. 2015) and border thumb representations (Jain
et al. 1997; Manger et al. 1997; Nakamura et al. 1998).

Cortical Surface Extraction and Normalization
The HCP structural MRI processing pipeline includes image dis-
tortion correction (Jovicich et al. 2006) and averaging the 2
acquired scans. Cortical segmentation was performed using
FreeSurfer. For cortical folding-based intersubject registration
to a group-average surface template, a multimodal surface
matching algorithm (Smith, Beckmann, et al. 2013; Robinson
et al. 2014) was applied in unimodal (sulcal depth only) mode.
A B1 (bias field) correction was performed and the data were
transformed nonlinearly into MNI space. Cortical myelin maps
were extracted from structural images by computing the ratio
of the T1w and T2w image values at each voxel between the
white and pial surfaces, and mapping this ratio to the cortical
surface (Glasser and Van Essen 2011; Glasser et al. 2013). The
HCP myelin maps used in the present study were chosen
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because they are improved over those available in previous
HCP data releases (Glasser et al. 2013).

Preprocessing of Functional Data (Functional Mapping)
We used preprocessed images offered by the HCP pipeline
(Glasser et al. 2013; Smith, Monaghan, et al. 2013). FSL and
FreeSurfer software packages were used to perform gradient
unwarping, motion correction, fieldmap-based EPI distortion
correction, brain-boundary-based registration of EPI data to
structural T1w scan, nonlinear (FNIRT) registration into MNI
space, and grand-mean intensity normalization. The data were
smoothed using an unconstrained 3D Gaussian kernel of
FWHM = 4mm. Activity estimates were computed using the
general linear model (GLM) as implemented in FSL’s FMRIB’s
Improved Linear Model (FILM) with autocorrelation correction
(Woolrich et al. 2001). Predictors were convolved with a double
gamma “canonical” hemodynamic response function (Glover
1999) to generate the main model regressors. Five predictors
covered the 12-s blocks: “right-hand movement,” “left-hand
movement,” “right foot movement,” “left foot movement,” and
“tongue.” One predictor covered the cue period prior to each
motor block (3 s). Temporal derivative terms derived from each
predictor were added to each GLM and were treated as con-
founds of no interest. The functional data were filtered with a
Gaussian-weighted linear high-pass filter with a cutoff of 200 s.
The time series was prewhitened within FILM to correct for
autocorrelations in the fMRI data. Surface-based autocorrel-
ation estimate smoothing was incorporated into FSL’s FILM at a
sigma of 5mm.

Preprocessing Functional Data (Resting State)
The preprocessing is in detail described elsewhere (Glasser et al.
2013; Smith, Beckmann, et al. 2013). Briefly, the functional data
were corrected for spatial distortions caused by gradient non-
linearity and were corrected for head motion by registering the
time series to the single-band reference image. In order to distor-
tion correct the EPI images, the 6 spin-echo images were fed into
FSL’s “Topup” to estimate a single fieldmap image (Glasser et al.
2013). The data were registered to the T1w structural image by
using the single-band reference image as the representative fMRI
image during alignment (Glasser et al. 2013). The data were con-
catenated, together with the structural-to-MNI nonlinear warp
field, and this single resulting warp (per time point) was applied
to the original time series to achieve a single resampling into
2-mm MNI space. Global intensity normalization was applied
and nonbrain voxels were masked out. A minimal low-pass filter
with a cutoff of 2 s was applied. To remove artifacts, an inde-
pendent component analysis using MELODIC with automatic
dimensionality estimation, limited to a maximum of 250, was
applied. These components were fed into FIX, which classifies
components into “good” versus “bad.” Bad components were
then removed from the data. Functional data were mean gray-
matter time series regressed.

Data were mapped onto the native cortical surface. Time
series were resampled from the original FreeSurfer surface
onto a lower resolution registered standard mesh of 2-mm
average vertex spacing and regularized with 2-mm FWHM sur-
face smoothing. The same artifactual processes as described
above were then removed from the grayordinate version of the
data by first applying the same high-pass temporal filtering
and then regressing the bad component’s time series out. The
resulting runs were combined across subjects using variance

normalization of the time series (using the same approach as
MELODIC, Beckmann and Smith 2004).

Statistical Analyses
As part of the HCP pipeline, fixed-effect analyses were con-
ducted using FSL’s FMRI Expert Analysis Tool (FEAT) to esti-
mate the average effects across runs within-subjects. Linear
contrasts were computed at the first level to estimate activa-
tion for each movement type versus all other movement types.
Mixed-effect analyses treating subjects as random effects were
conducted using FSL’s FMRIB’s Local Analysis of Mixed Effects
(FLAME) to estimate the average effects of interest for the group
using one-sample t-tests. Statistical analyses were conducted
separately for the left and right hemispheres, and surface out-
puts were combined at the conclusion of analysis.

To identify hand and face representations, we used an adap-
tive thresholding algorithm. We first identified the peak of each
cluster and started thresholding at the lowest z-value within
each area. We stepwise reduced cluster size until a predefined
cluster size of 400 vertices was reached (Long et al. 2014). The
z-threshold was set at z > 5. The extension of the cluster was
restricted by the left-hemispheric FreeSurfer surface labels of
area 3b and area 4. We sampled z-values of hand and face task
activation maps between the hand and face representations by
sampling superior to inferior parallel to the central sulcus. We
sampled z-values along the path, and calculated the intersec-
tion points between hand and face task activation maps to
functionally define the hand–face border.

We sampled group-averaged as well as individual cortical
myelin content within and between hand and face representa-
tions using the cortical paths as specified above. The peak
detection algorithm was used to calculate global and local min-
ima and maxima, and maximal slope differences were used to
detect local turning points. We correlated the T1w/T2w ratios
sampled between the peaks and the global minimum within
the hand and face representations with the z-values obtained
using the contrasts hand – (face + foot), and face – (hand +
foot), respectively, using Spearman rank coefficients. We used a
corrected P-value of P < 0.0125 to identify significant correla-
tions. T1w/T2w ratios of the above specified cortical paths were
extracted of individual participants and compared with neigh-
boring values (P < 0.0025, Bonferroni-corrected).

As part of the HCP processing pipeline, a group-PCA (prin-
cipal component analysis) was applied on the combined time
series that approximates full temporal concatenation of all
subjects’ data, outputting the strongest 4500 spatial eigenvec-
tors (PCA components, weighted by the eigenvalues). We cre-
ated a spatial correlation matrix for each vertex by correlating
each row within the spatial eigenvector map with each other
row using Pearson correlations. The Fisher z-transformed r-
value of each vertex thus represented the similarity of the
functional connectivity profile of this vertex to all other verti-
ces. The “max statistic” method was used for adjusting the
P-values of each correlation for multiple comparisons (Groppe
et al. 2011a, 2011b). Like Bonferroni correction, this method
adjusts P-values in a way that controls for the familywise
error rate. A significance threshold of P < 0.05 was applied. To
assess local variation in functional connectivity, we calcu-
lated the mean correlation of each node with its neighbors
within a 4mm radius (based on exact geodesic distance
[Mitchell et al. 1987], as implemented in https://code.google.
com/p/geodesic/). Correlation values were Fisher’s r-to-z trans-
formed before averaging within a scan. The 4 within-scan maps
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were then averaged on the individual-level before group-level
analyses.

Individual Participant Analyses Using Quantitative
Imaging at 7 T

Participants
In order to validate the large-scale analyses as conducted above
on the single subject level with improved spatial resolution and
improved imaging processing tools, additional functional and
structural data were acquired for 7 healthy human participants
(25.6 years ± 3.0 years, 5 females), who participated in 2 MR
scanning sessions. None of the participants had a history of
any neurological or psychological disorder. Informed consent
was given prior to scanning, and all participants were compen-
sated for their attendance. The study was approved by the
Ethics committee at the University of Leipzig.

MRI Data Acquisition
Structural ultra-high-resolution MRI data were acquired at a 7 T
MAGNETOM Siemens MR scanner situated in Leipzig, Germany.
A 24-channel head coil was used. For each participant, quantita-
tive images of the T1 relaxation time as well as T1w images were
obtained by using an MP2RAGE sequence (Marques et al. 2010),
and a TR-FOCI pulse for inversion (Hurley et al. 2010). A whole-
brain image at 0.7-mm isotropic resolution (TI1/TI2 = 900/
2750ms, TR = 5 s, TE = 2.45ms, alpha1/alpha2 = 5°/3° and no
GRAPPA) and images of the 2 individual hemispheres at 0.5mm
isotropic resolution were acquired (same parameters as above,
with GRAPPA = 2 and total scanning time 75min). One partici-
pant (P6) took part in 2 additional scanning sessions, where
ultra-high-resolution T2*-weighted images with a resolution of
0.5mm isotropic (multi-echo FLASH sequence, TE1–4 = 9.18ms,
17.33ms, 25.49ms, 33.65ms, TR = 44ms, GRAPPA = 2, and scan
time: 26min, Tardif et al. 2016), and T2* and T1 images at lower
resolution were obtained (0.6 and 0.7mm isotropic, multi-echo
T2* FLASH sequence, TE1-2 = 8.16ms, 18.35ms, TR = 29ms,
GRAPPA = 3; T1 sequence: parameters same as above).

FMRI data were acquired at a 3 T VERIO Siemens MR Scanner
situated in Leipzig. A 32-channel head coil was used. Twenty
slices were acquired at 2mm isotropic resolution, with inter-
leaved slice timing (gap: 1mm), TR = 2 s, TE = 30ms, FA = 90°,
and matrix size: 96 × 96. Functional imaging started with 2 rest-
ing state scans (6min each), followed by one hand/face mapping
block (12min), another resting state block (6min), and another
hand/face mapping block (12min). A T1w anatomical scan was
acquired prior to functional imaging (MPRAGE, resolution: [1.3 ×
1.3 × 1.2] mm3, TE = 2.83ms, and TR = 2300ms). For the first par-
ticipant, this anatomical scan was not acquired. A fieldmap was
acquired prior to functional data acquisition ([3 × 3 × 4] mm3, 30
slices, TR = 488ms, TE1-2 = 5.19ms, 7.65ms, and FA = 60°).

Task
During the functional mapping blocks, participants were visu-
ally instructed to tap their right fingers and thumb (one after
the other), to move their right foot and toes, or to move their
tongue sideways along the inner side of the lip while keeping
the mouth closed, respectively. The latter movement activated
lip, lower face, and tongue representations. Lip and lower face
representations are superior to tongue representations (Zeharia
et al. 2015) and border thumb representations (Jain et al. 1997;
Manger et al. 1997; Nakamura et al. 1998). Each movement
block lasted for 25 s and was alternated with pause blocks that

lasted 15 s. Each condition was repeated 6 times, adding up to
18 trials per block.

Cortical Surface Extraction
Myelin mapping analyses were performed using the CBS Tools
software package, a plug-in for the MIPAV software package
(McAuliffe et al. 2001) and the JIST pipeline environment (Lucas
et al. 2010). The CBS Tools are freely available for download at
http://www.nitrc.org/projects/cbs-tools/. The software package
is optimized for processing MP2RAGE sequence data acquired
at ultra-high field MRI and operates in a fully automated way
(Bazin et al. 2014). In multiple steps, structural data were regis-
tered and represented in Cartesian space using a level-set
framework (Sethian 1999). The 3 T1 images acquired per subject
were first rigidly coregistered to the standard anatomical MNI
reference space (6 degrees of freedom), which was optimized
using a cost function of normalized mutual information. The 2
single-hemispheric 0.5mm T1 images were fused, and data
were resampled to a resolution of 0.4mm (Bazin et al. 2014;
Dinse et al. 2015). Intensity normalization was performed to
correct for intensity inhomogeneities (Bazin et al. 2014). Several
steps were taken to remove extra-cranial tissue to enhance
structures with strong partial voluming and to ensure correct
folding pattern (Bazin et al. 2014). The CRUISE algorithm (Han
et al. 2004) was used to estimate the white matter/gray matter
(wm/gm) boundary and the gray matter/cerebrospinal fluid
(gm/csf) boundary. Only left hemispheres were processed.

The recently validated equivolume model (Waehnert et al.
2014, 2016) was used to model the surfaces in reference to indi-
vidual cortical folding patterns and to specify cortical layers. The
cortical sheet of each subject was divided into 21 surfaces per-
pendicular to which traverses were constructed. Traverses run
from the wm/gm boundary to the gm/csf boundary. The cortical
sheet was initially divided into 21 surfaces (instead of 4), because
the 3 most pial and the 2 deepest layers were excluded to reduce
an effect of partial voluming on the results (Tardif et al. 2015).
The remaining 16 layers were then averaged into 4 equally
spaced layers for further analyses. Quantitative T1 values of MR
images were sampled along the traverses at different cortical
depth to derive layer-dependent and across-layer myelin con-
tent. Finally, cortical surface inflation was performed on the
extracted surfaces (Tosun et al. 2004), and layer-dependent T1

values were mapped onto these inflated surfaces. Cortical thick-
ness (CT) was calculated by computing the normal vector at the
wm/gm boundary surface toward the gm/csf boundary.

We obtained a precise co-alignment between the T2* and the
T1 images by first co-registering the low-resolution T2* images to
the low-resolution T1 image acquired within the same scanning
session using rigid registration in MIPAV. We then coregistered
the low-resolution T1 image onto the high-resolution T1 image
with rigid registration in MIPAV followed by nonlinear alignment
with ANTS (Avants et al. 2008), and performed the same co-
registration between the low- and high-resolution T2* images.
Through composition of all transformations with the CBS Tools,
we obtained a matching between the high-resolution T2* and the
high-resolution T1 image with a single interpolation step. Both
images being in the same space as the T1 image allowed us to
use the wm/gm and gm/csf surface boundaries as obtained from
T1-based segmentation for T2*-based analyses.

Functional Data Preprocessing
Functional imaging data were first preprocessed using SPM8
(Statistic Parametric Mapping, Wellcome Department of
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Imaging Neuroscience, University College London, London, UK)
using standard pipelines and were then coregistered to the
structural data using MIPAV. A slice timing correction and
realignment were applied to correct for differences in image
acquisition time between slices, and to minimize movement
artifacts in the time series. Functional data were unwarped and
distortion corrected using FSL FMRIB’s Utility for Geometrically
Unwarping EPIs (FUGUE) using the acquired fieldmap.

For registration, functional imaging data were averaged and
corrected for inhomogeneities using a shading correction algo-
rithm (kernel FWHM: 0.15 and Wiener filter noise: 0.01) imple-
mented in MIPAV. Subjectwise registration to the anatomical
T1w scan (acquired within the same scanning session as the
functional data) was performed using landmark-based least-
square registration. Correct registration within sensorimotor
areas was visually checked voxel-by-voxel (with functional and
anatomical images greatly zoomed in such that individual voxels
were clearly visible) and was stepwise improved until a plateau
was reached (typically 8–12 iterations). Stepwise improvements
included placing manual landmarks at enlarged voxels at corre-
sponding locations within functional and structural images,
which informed an automated algorithm to realign the images
based on these landmarks. A plateau was reached when no fur-
ther improvement on the voxel-level could be detected after 3
iterations. An overview about registration accuracy can be
inspected in Supplementary Figure 1.

In a second step, the T1w scans acquired at 3 T during fMRI
scanning were registered to the 0.7mm T1 images acquired at the
7T scanner using FNIRT (FMRIB’s nonlinear image registration
tool). In 2 subjects (one subject: no available anatomical 3 T scan,
second subject: bad quality of anatomical 3 T scan likely due to
head motion), functional data were directly registered to 0.7mm
T1 7-T anatomies. The use of nonlinear automated registration
allowed correcting for scanner-specific distortions. The 0.7mm
7-T T1 scans were then linearly registered to the ultra-high-
resolution T1 image (0.4mm) using FLIRT. These registration
matrices were applied to the functional data to register them to
the high-resolution structural images. Note that although slightly
different registration approaches were used for these 2 subjects
due to the lack of a 3-T T1w scan (i.e., down-sampling from 2mm
to 1.2mm versus down-sampling from 2mm to 0.7mm), registra-
tion accuracy was high across all subjects (see Supplementary
Fig. 1). In addition, FreeSurfer labels of primary somatosensory
cortex and primary motor cortex, that is, area 3b and area 4, were
registered to the individual subject’s high-resolution surface
derived from the 0.7mm T1 image using a custom-built registra-
tion algorithm implemented in FreeSurfer. This allowed restrict-
ing surface-based mapping analyses (see below) to our regions of
interest, that is, area 3b and area 4.

In a second analysis stream, functional data were normal-
ized and smoothed with a Gaussian kernel of 3mm. These ana-
lyses were conducted only for reporting results in a standard
way (MNI coordinates, normalized, voxel resolution of 3mm
isotropic); they were not used for myelin mapping analyses.

Statistical Analyses
Fixed-effect analyses were conducted using SPM8 to estimate
the average effects across runs subject by subject. Regressors
were created for each movement type (hand, face, and foot), and
for the rest condition (the foot regressor was only included in the
model to obtain data comparable to the HCP data set, see above).
Six motion parameters were included as regressors of no inter-
est. Linear contrasts were computed at the first level to estimate

activation for each movement type versus all other movement
types. Linear contrast images and contrast estimates were com-
puted in 3-dimensional space, and were registered to surface
space. Functional data were cluster-corrected with a familywise
error correction (P < 0.05).

Beta images were mapped onto the cortical surface, and
masked with area 3b and area 4 FreeSurfer surface labels.
Quantitative T1 values (ms) in different cortical depths, func-
tional activity (t-values), and cortical thickness (CT) values
(mm) were sampled along predefined paths between hand and
face representations. The paths were guided by highest prob-
ability of labels present in the cortical areas.

For group statistics, we correlated t-values and T1 values
sampled along the paths as specified above using Pearson corre-
lations. We used a corrected P-value of 0.0125 (corrected for 4
comparisons performed in each subject). We sampled T1 values
through cortical depths at locations of peak t-values, and at
intersection points between hand and face activation maps (if
multiple intersection points were present within one area, the
most inferior one was chosen by convention). T1 sampling was
restricted to 16 layers. The 3 most pial and the 2 deepest layers
were excluded to prevent an effect of partial voluming on the
results (Tardif et al. 2015). Data were averaged to “deep layers”
(layers 1–4, close to wm/gm boundary), “inner middle layers”
(layers 5–8), “outer middle layers” (layers 9–12), and “superficial
layers” (layers 13–16, close to gm/csf boundary) (Tardif et al.
2015). To investigate layer-specific effects, ANOVAs were con-
ducted with the factors location (hand, hand–face border, and
face), and layer (deep, inner middle, outer middle, and superfi-
cial) for area 3b and area 4. Paired-sample t-tests were conducted
within each of the 4 layers to examine whether myelin reduc-
tions at the hand–face border could be detected in each layer or
only in specific layers. The significant threshold was set at P <
0.05 (Sereno et al. 2013). We sampled 1/T2* values from the T2*
images that were acquired for one participants (P6) across cor-
tical depths. Values were sampled along the 2 predefined paths,
one in area 3b and one in area 4, as specified above.

Results
Reduced Cortical Myelin Between Hand and Face
Representations

To investigate the relationship between cortical myelin and body
part topography in area 3b and area 4, we obtained structural
and functional neuroimaging data from a large data set (N > 400,
HCP). We used the ratio method (T1w/T2w) as a proxy for cortical
myelin in vivo. Functional MR images acquired during hand and
face movements were used to map hand and face (in particular
lower face, lip, and tongue) representations in human area 3b
and area 4 (see Table 1). Whole-brain maps showed high cortical
myelination (indicated by high T1w/T2w ratios) in primary sen-
sory and motor cortices (see Fig. 1A), as expected based on prior
reports (Flechsig 1920; Hopf 1969; Sereno et al. 1995; Glasser and
Van Essen 2011; Dick et al. 2012; Nieuwenhuys 2013). However,
we also identified a sharp, S-shaped border that separates area
3b and area 4 horizontally into superior and inferior parts (see
Fig. 1A). This border corresponded to the functional hand–face
border identified using BOLD imaging (see Fig. 1A,B and see
Supplementary Fig. 2A,B for right hemisphere). Paired-sample t-
tests revealed that the cortical myelin reductions at the func-
tional hand–face border were significant both in area 3b and in
area 4 (all P < 0.001, see Fig. 1C).
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We also found a positive correlation between cortical mye-
lination within hand and face representation areas and the
z-scores related to the functional activation during motor
movements (face area 3b: P < 0.5 × 10−15, ρ = 0.96; hand area 3b:
P < 0.5 × 10−5, ρ = 0.98; face area 4: P < 0.005, ρ = 0.96; hand area
4: P < 0.5 × 10−15, ρ = 0.90, see Fig. 1D).

Myelin Borders Can Be Identified in Individual
Participants Using Quantitative Imaging at 7 T

To investigate whether myelin borders can also be identified in
individual participants, we conducted similar analyses on indi-
vidual data sets acquired at a 7 T MR scanner with the following
improvements: 1) We avoided structural normalization to prevent
registration-related artifacts, 2) we used a different validated
marker to describe cortical myelin (quantitative T1 values, Stüber
et al. 2014; Dinse et al. 2015), 3) we used a biologically motivated
algorithm to define cortical layers (Waehnert et al. 2014), and 4)
we improved the spatial resolution of the data to prevent
smoothing-related artifacts within sensory and motor areas.
Again, we found highly myelinated primary sensory and motor
cortices within each individual participant (see Supplementary
Fig. 3A). Critically, we found a patchy myeloarchitecture within
area 3b and area 4 (see Figs 2A,C and 3A; Supplementary Figs 3A
and 4A). Local reductions in cortical myelin corresponded to the
functional hand–face border as described using BOLD imaging in
each individual participant (n = 7, see Figs 2A,C and 3A, and
Supplementary Fig. 4A). This was confirmed by a significant dif-
ference between the myelin content within the border area

compared with topographic centers ([hand + face]/2-border, in
T1 (ms) compared with a normal distribution with a mean
equal to zero: area 3b: −46.70 ± 33.13, t(15) = −5.64, P = 4.71 ×
10−5, area 4: −206.96ms ± 117.36ms (mean ± SD), t(15) = −7.05,
P = 3.91 × 10−6, note that negative values indicate a strong mye-
lin difference, because high T1 values [ms] indicate low myelin,
see Fig. 4B). Note that the latter analyses correct for the general
decrease in cortical myelination in inferior compared with
superior areas.

Cortical myelination (T1 values, normalized, inverted) and
functional activity (t-values, normalized) at the individual level
had positive correlation coefficients (24/28 correlations, where 28
reflected 2 cortical areas [area 3b, area 4] × 2 representations
[hand, face] × 7 participants), indicating that higher cortical mye-
lination corresponded with higher functional activity within the
same area; for 5/7 participants, these correlations reached sig-
nificance for either area 3b, area 4, or both (see Figs 2B,D and 3B,
and Supplementary Fig. 4B). Note that these correlations were
not performed to test our hypotheses about a structural myelin
border between hand and face areas; a structural hand–face bor-
der could well exist also without significant correlations between
cortical myelin and BOLD signal change within each topographic
area. Those analyses were conducted to provide additional infor-
mation to the reader on the relationship between cortical mye-
lination and BOLD signal change within topographic areas that
may be used as an inspiration for future studies. The results of
these correlations will not be part of the discussion.

T2*-based image contrast can also be used for in vivo histology
of cortical myelin and iron (Deistung et al. 2013; Stüber et al. 2014).

Table 1. BOLD signal change elicited by hand and face (in particular lip and tongue) movements

Contrast Hand – (face + foot) Face – (hand + foot)

P Area t-value MNI x,y,z k Area t-value MNI x,y,z k

1 4 25.44 −36, −22, 44 179 4 20.34 −48, −8, 32 129
3b 24.84 −38, −24, 54 88 3b 21.39 −54, −16, 34 228

2 4 23.33 −38, −20, 52 194 4 20.89 −44, −16, 38 129
3b 19.19 −38, −22, 52 62 3b 21.45 −56, −12, 32 231

12.20 −40, −32, 56 21
6.79 −54, −12, 42 6

3 4 26.86 −36, −26, 54 119 4 23.77 −48, −14, 38 153
3b 27.24 −52, −14, 42 266 3b 27.24 −52, −14, 42 266

4 4 26.29 −30, −24, 56 159 4 15.33 −52, −6, 34 107
3b 13.22 −38, −22, 52 40 3b 14.73 −56, −8, 36 149

13.09 −42, −30, 56 36
5 4 23.43 −32, −20, 42 254 4 26.45 −44, −6, 32 100

7.65 −22, −28, 56 18
3b 13.07 −44, −16, 44 8 3b 17.86 −54, −10, 26 85

12.69 −46, −18, 52 33 6.07 −20, −34, 64 10
9.21 −58, −8, 24 12

6 4 34.90 −38, −22, 54 185 4 30.91 −52, −8, 34 100
6.31 −14, −32, 60 10 8.03 −36, −18, 40 30

3b 32.98 −38, −22, 52 140 3b 34.87 −54, −12, 40 137
13.04 −38, −30, 54 45
8.02 −30, −36, 58 5

7 4 26.93 −36, −20, 52 178 4 19.97 −54, −6, 28 84
3b 23.13 −44, −28, 54 25 3b 22.82 −56, −6, 30 239

16.88 −42, −18, 50 83
Group-average HCP 4 29.32 −39, −19, 65 403 4 31.57 −57, −4, 35 548

3b 28.74 −41, −21, 60 998 3b 31.36 −57, −6, 35 1024

Notes: Shown are normalized, cluster-corrected (FWE, P < 0.05, k > 5) single subject results (n = 7) for the contrasts hand – (face + foot) and face – (hand + foot). Individual

participants (P) are labeled with numbers (corresponding to Supplementary Fig. 3E). The last 2 rows show the group-averaged results of the HCP data set (N = 460).
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For one participant (P6), we investigated whether cortical mye-
lin reductions between hand and face representation areas
were visible in T2*-based image contrasts. An increase in T2*
values (depicted as a decrease in 1/T2* values, indicating a

decrease in cortical myelin, see Supplementary Fig. 5) between
hand and face representations was present, both in area 3b and
in area 4. The effect size was approximately 10% of the total
cortical T2* signal variation.

Figure 1. Relationship between cortical myelination and cortical task activation in large-cohort data set (HCP). (A) Cortical myelin content (T1w/T2w) and BOLD signal

change (z-values, contrast: hand – [face + foot], face – [hand + foot]) averaged over a large group sample. Arrows indicate the S-shaped border separating hand and face

representation areas (see Supplementary Fig. 2 for right hemispheric data). (B) Cortical myelin content (T1w/T2w) and BOLD signal change (z-values) sampled vertically

from the superior border of the hand representation to the inferior border of the face representation, parallel to the central sulcus (see Supplementary Fig. 2 for sample

paths). Values are normalized to 0–1 using arbitrary units (au). Supplementary Figure 2 shows corresponding right hemispheric plots. (C) Means of individual participants’

myelin content (T1w/T2w). Vertex numbers correspond to those in B, values are sampled from the hand–face intersection point ±10 vertices (values sampled from every

second vertex, see Supplementary Fig. 2). Edges show 25th and 75th percentiles, whiskers extend to the most extreme data points not considered outliers, outliers are plot-

ted individually. Significant pairwise comparisons (Bonferroni-corrected P < 0.0025) are marked with a star. (D) Correlations between cortical myelin content (T1w/T2w)

and BOLD signal change (z-values) elicited by hand and face movements within the hand and face representations of area 3b and area 4. Values are sampled along cortical

paths (see Supplementary Fig. 2), and normalized to values between 0 and 1 using arbitrary units (au). All 4 correlations reached significance (P < 0.005).
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Cortical Myelin Reductions Revealed Cortical
Depth-Dependent Profiles

During motor movements, area 3b receives tactile input from
the thalamus at the cortical layer IV, whereas area 4 receives
motor commands at somewhat more superficial cortical layers.
We expected cortical myelin reductions at the hand-face border
to be situated in middle cortical layers in area 3b and in some-
what more superficial layers in area 4 if myelin reductions
were specific with respect to input structures. With respect to
output structures, area 4 sends motor output to the corticosp-
inal tract via cortical layer V, whereas area 3b sends sensory
output to neighboring cortical areas mainly via superficial

layers. Cortical myelin reductions at the hand-face border were
hence expected to be situated in superficial cortical layers in
area 3b, and in deep cortical layers in area 4, if myelin reduc-
tions were specific with respect to output structures.

To investigate this, we conducted ANOVAs with the factors
location (hand, hand–face border, and face) and layer (deep,
inner middle, outer middle, and superficial). An anatomically
motivated layering model was used to define cortical layers
(Waehnert et al. 2014). We found a main effect of location
(F(2, 12) = 4.29 and P = 0.039), a main effect of layer (F(3, 18) = 70.20
and P < 10−6), and an interaction between layer and location
within area 4 (F(6, 36) = 3.31 and P = 0.01), and a main effect of
layer within area 3b (F(3, 18) = 135.96 and P < 10−6). To

Figure 2. Relationship between cortical myelination and cortical task activation: (A, C) Cortical myelin content (T1 [ms], sampled at 25% cortical depth in A and at 50%

cortical depth in (C) due to cortical depth-dependent myelin reductions, see Fig. 4) and BOLD signal change (t-values) within somatosensory cortex (area 3b) and pri-

mary motor cortex (area 4) elicited by hand and face (in particular tongue and lip) movements, respectively, of one individual participant (see Fig. 3 and

Supplementary Fig. 4 for remaining participants). The contrast hand – (face + foot) is displayed in red color, the contrast face – (hand + foot) is displayed in blue color.

Structural and functional data are masked with FreeSurfer surface labels of area 4 and area 3b, respectively. Two millimeter tangential smoothing (i.e., within cortical

layers) was applied to T1 values for visualization purposes only. (B, D) Correlations between cortical myelin content (T1 values, normalized to [0 1], and inverted to cor-

respond to high myelin) and BOLD signal change (t-values, normalized) sampled vertically from hand to face representations within area 4 and area 3b, respectively

(see Supplementary Fig. 6C for sampling paths). Significant correlations (P < 0.0125) are marked with a star.
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investigate the significant interaction between location and layer
in area 4, we compared cortical myelin values between the cen-
ters of the hand and face representation areas with those
sampled within the functionally defined hand–face border at dif-
ferent cortical depths (path length = 33.95mm ± 12.45mm
[mean ± SD]). We found a significant reduction of cortical myelin
(corresponding to an increase in T1 values) between the function-
ally defined hand representation and the functionally defined

hand–face border in superficial and inner middle layers of area 4
(P < 0.05, see Fig. 4B,C and Table 2). In an exploratory analysis,
we also investigated whether significant myelin reductions were
confined to specific layers within area 3b (path length area 3b =
32.85mm ± 11.83mm, see Supplementary Fig. 6C for path visua-
lizations). We found a significant reduction of cortical myelin
(corresponding to an increase in T1 values) between the function-
ally defined hand representation and the functionally defined

Figure 3. Relationship between cortical myelination and cortical task activation in primary somatosensory cortex: (A) Cortical myelin content (T1 [ms]) and BOLD

signal change (t-values) within primary somatosensory cortex elicited by hand and face (in particular tongue and lip) movements, respectively, of 6 individual partici-

pants (see Fig. 2 for remaining participant and see Supplementary Fig. 4 for area 4). The contrast hand – (face + foot) is displayed in red color, the contrast face –

(hand + foot) is displayed in blue color. Structural and functional data are masked with the probabilistic FreeSurfer label of area 3b. Arrows indicate the hand–face

border, and are placed at corresponding locations within functional and structural images. Cortical myelin content was sampled at 50% cortical depth, because the

correspondence between the cortical myelination and the functional hand–face border was most evident in middle cortical layers of area 3b (see Fig. 4). Two milli-

meter tangential smoothing (i.e., smoothing within cortical layers) was applied to T1 values for visualization purposes only. (B) Correlations between cortical myelin

content (T1 values, normalized to [0 1] and inverted to correspond to high myelin) and BOLD signal change (t-values, normalized) sampled vertically from hand to

face representations (see Supplementary Fig. 6 for sampling paths) within area 3b. Significant correlations (P < 0.0125) are marked with a star. One column represents

data of one participant; see Supplementary Figure 3E for color coding.
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hand–face border in outer middle layers of area 3b (P < 0.05, see
Fig. 4C and Table 2).

Cortical myelination often covaries with CT (Sereno et al.
1995). To see whether this was the case at the hand–face border,
we compared CT values between our sample points using a
Bonferroni-corrected significance threshold of P < 0.0125 (4 com-
parisons, two in each area). We found no significant differences
in CT in area 3b (CT hand representation = 2.11mm ± 0.40mm
[mean ± SD], CT hand–face border = 2.15mm ± 0.53mm, CT face
representation = 2.21mm ± 0.27mm, both P > 0.8), and area 4
(CT hand representation = 3.15mm ± 0.42mm; CT hand–face

border = 3.81mm ± 2.22mm, P > 0.4; CT face representation =
4.39mm ± 2.28mm; CT hand–face border = 3.81mm ± 2.22mm,
P > 0.02; see Fig. 4A and Supplementary Fig. 6A,B).

Cortical Myelin Borders (Minima) Correspond to Shifts
in Pattern of Intrinsic Functional Connectivity

The correlation of intrinsic fluctuations in fMRI signal reflects the
spatial organization of functional networks (Biswal et al. 1995;
Smith et al. 2009). To assess whether topographic parcellation
reflects functional network structure, we compared the

Figure 4. Cortical depth-dependent reduction of cortical myelination between hand and face representation areas using quantitative imaging. (A) Cortical activation

(CA, t-values, upper panel), cortical depth-dependent myelination (CD, T1 [ms], middle panel), and CT ([mm], lower panel) sampled along cortical paths running from

functionally defined hand representations to functionally defined face representations (D is the distance on cortical surface, see Supplementary Fig. 6 for sampling

paths). Data are shown for primary somatosensory cortex (area 3b) and primary motor cortex (area 4). (B) Cortical depth-dependent myelin reductions between body

part representations and hand–face border corrected for the global decrease of cortical myelination in inferior areas. Each line represents one participant. (C) Group-

averaged (N = 7) cortical myelination (T1 [ms]) sampled from functionally defined hand representations, functionally defined hand–face borders, and functionally

defined face representations (mean ± SEM). Different colors indicate different cortical depths. Each color represents averaged data of 4 modeled cortical layers.

Significant comparisons (P < 0.05) are marked with a star. Note that higher T1 values reflect lower cortical myelin.
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functional connectivity of each pair of vertices along the previ-
ously described paths running parallel to the central sulcus (see
Fig. 5; Supplementary Figs 7 and 2A for path visualization). While
local functional connectivity to proximate vertices was consist-
ently highest, correlations were also higher within the same
topographic area (Chen et al. 2011; Long et al. 2014), with the pri-
mary division coinciding with the within-3b and within-4 cortical
myelin borders (see Fig. 5 and Supplementary Fig. 7). The identi-
fied area of reduced myelination had particularly lower local con-
nectivity, as assessed by calculating the mean correlation of each
node to its neighbors within a 4mm radius along the predefined
paths (see Supplementary Fig. 7). Notably, when sampling intrin-
sic functional connectivity values (r) along the cortical paths, we
observed higher functional connectivity between hand represen-
tations of area 3b and area 4, and face representations of area 3b
and area 4, compared with hand and face correlations within
each nominal cortical area (see Fig. 5).

Discussion
Our findings demonstrate that human area 3b and area 4 are
not homogenous, but are subdivided into distinct cortical fields,

each representing a major body part. Myelin borders coincide
with intrinsic functional connectivity borders as measured dur-
ing the resting state, and show layer-specific reductions within
area 3b and area 4. Our data point to a topographic parcellation
model of human sensorimotor cortex and suggest that body
parts may be an important organizing principle, similar to sen-
sory and motor processing. This has implications for models of
the structure, connectivity, function, and plasticity of the sen-
sorimotor system, as discussed below.

Our data suggest modification of current brain atlases that
depict area 3b and area 4 as homogenous areas. Also several
other research teams recently proposed reconsideration of
Brodmann’s original map (Amunts and Zilles 2015; Wang et al.
2015; Glasser et al. 2016). For example, Brodmann classified vis-
ual area 19 as homogenous. However, the cortical territory
spanning area 19 is structurally inhomogeneous (Sereno et al.
2013) and turned out to contain multiple retinotopic maps
(Sereno et al. 1995; Angelucci et al. 2015), and multiple cortical
fields, including, for example, area MT/V5. Similarly, by com-
bining in vivo cortical myeloarchitecture with topographic
maps and functional connectivity analyses, Glasser et al. (2016)
identified multiple novel areas in Brodmann area 6, including

Table 2. Cortical depth-dependent reduction of cortical myelin between hand and face (in particular lower face, lip, tongue) representations
using defined paths based on individual cortical folding patterns

Layer Primary motor cortex Primary somatosensory cortex

Hand Border Face Hand Border Face

1 (D) 1640.8 ± 10.9 1679.2 ± 25.6 1691.1 ± 24.6 1676.1 ± 17.9 1680.8 ± 25.5 1705.3 ± 30.3
P = 0.24 P = 0.70 P = 0.90 P = 0.63

2 (D) 1662.4 ± 13.4 1721.6 ± 36.7 1701.7 ± 30.1 1697.2 ± 19.4 1708.5 ± 23.3 1728.9 ± 31.7
P = 0.18 P = 0.72 P = 0.76 P = 0.65

3 (D) 1670.6 ± 15.6 1756.3 ± 46.7 1773.8 ± 62.4 1711.8 ± 21.2 1740.0 ± 24.2 1755.2 ± 35.0
P = 0.13 P = 0.74 P = 0.47 P = 0.72

4 (D) 1669.9 ± 16.1 1815.0 ± 82.6 1758.7 ± 47.2 1715.4 ± 22.9 1770.6 ± 27.4 1781.4 ± 40.5
P = 0.12 P = 0.46 P = 0.22 P = 0.81

5 (IM) 1663.9 ± 14.3 1848.4 ± 94.3 1778.0 ± 52.2 1716.1 ± 25.9 1794.2 ± 31.6 1804.0 ± 47.6
P = 0.08 P = 0.38 P = 0.12 P = 0.85

6 (IM) 1657.1 ± 13.2 1869.3 ± 90.45 1762.2 ± 32.9 1718.1 ± 29.5 1812.4 ± 35.4 1829.8 ± 58.8
P = 0.04* P = 0.31 P = 0.08 P = 0.78

7 (IM) 1658.7 ± 11.8 1904.8 ± 100.4 1790.0 ± 36.3 1722.1 ± 33.1 1827.0 ± 39.4 1857.2 ± 71.0
P = 0.03* P = 0.29 P = 0.08 P = 0.68

8 (IM) 1672.2 ± 11.8 1944.5 ± 119.2 1782.9 ± 37.3 1725.9 ± 36.3 1844.8 ± 41.0 1883.4 ± 81.7
P = 0.04* P = 0.28 P = 0.07 P = 0.67

9 (OM) 1697.7 ± 12.9 1990.3 ± 143.3 1785.9 ± 43.7 1737.9 ± 37.4 1872.3 ± 37.1 1907.6 ± 89.9
P = 0.07 P = 0.26 P = 0.05* P = 0.72

10 (OM) 1729.7 ± 16.6 2029.7 ± 157.9 1798.1 ± 49.8 1769.4 ± 35.7 1908.4 ± 29.3 1937.6 ± 94.4
P = 0.09 P = 0.25 P = 0.04* P = 0.79

11 (OM) 1762.0 ± 23.9 2068.7 ± 165.7 1810.0 ± 51.5 1808.7 ± 37.7 1955.1 ± 31.2 1969.8 ± 99.7
P = 0.09 P = 0.22 P = 0.05* P = 0.91

12 (OM) 1801.1 ± 28.2 2116.9 ± 170.9 1829.8 ± 43.4 1856.3 ± 42.9 2012.3 ± 45.5 2005.1 ± 102.7
P = 0.09 P = 0.16 P = 0.08 P = 0.96

13 (S) 1840.4 ± 32.1 2157.0 ± 145.5 1875.8 ± 41.0 1917.4 ± 50.7 2081.8 ± 63.8 2051.8 ± 101.3
P = 0.05* P = 0.11 P = 0.13 P = 0.85

14 (S) 18823.3 ± 33.9 2217.2 ± 116.9 1942.8 ± 51.2 1996.9 ± 59.4 2150.1 ± 71.4 2106.3 ± 97.1
P = 0.02* P = 0.07 P = 0.20 P = 0.80

15 (S) 1941.9 ± 36.2 2318.3 ± 117.2 1988.3 ± 48.4 2098.2 ± 64.7 2221.7 ± 66.0 2185.6 ± 94.7
P = 0.02* P = 0.04* P = 0.29 P = 0.82

16 (S) 2055.2 ± 44.8 2451.7 ± 127.6 2080.6 ± 57.1 2219.0 ± 67.9 2312.2 ± 60.1 2294.4 ± 93.3
P = 0.04* P = 0.04* P = 0.40 P = 0.89

Notes: T1 values (ms) extracted from different cortical depths and brain areas (primary motor cortex and primary somatosensory cortex) are shown as mean ± SEM.

Values were extracted from functionally defined hand representations, functionally defined face representations, and the hand–face intersection point (averaged

over N = 7 participants). Note that high values correspond to low cortical myelin. Significant comparisons (P < 0.05) are marked with a star and are printed in bold. D,

deep cortical layers; IM, inner middle cortical layers; OM, outer middle cortical layers; S, superficial cortical layers.
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area 6mp, 6ma, and the SCEF. Our study suggests that parcella-
tion atlases will benefit by explicitly combining functional
imaging with quantitative cytoarchitectonic and myeloarchi-
tectonic mapping techniques in the same set of subjects
(Amunts and Zilles 2015; Glasser et al. 2016).

A critical question emerges: Are hand and face representations
in area 3b and area 4 (meso-maps), or should they be classified as
micromaps, nonrepetitive elements that occur within a given area
(Amunts and Zilles 2015)? Cortical structures can be as assigned
meso-maps, if they have specific functions in terms of cognitive
or mental processes, specific connectivity patterns, offer reprodu-
cibility, multimodality, evolutionary coherence, and generaliza-
tion from one brain to another (Amunts and Zilles 2015). Former
experiments have assigned specific functions to somatotopic pro-
cessing in humans, not only in terms of selective activation during
motor movements or sensory perception (Penfield and Boldrey
1937), but also during cognitive tasks, such as during language
processing (Kuipers et al. 2013; Mollo et al. 2016), arithmetic
(Harvey et al. 2013), working memory (Kastner et al. 2007; Barsalou
2008), and visual perception (Orlov et al. 2010). Somatotopy serves
as an organizing element from subcortical structures up to the
highest-level cortical areas (Brooks et al. 2005; Sereno and Huang
2006; Nanbu 2009; Orlov et al. 2010; Pereira et al. 2013; Rech et al.
2015; Zeharia et al. 2015). In addition, functional connectivity is
altered at the structural hand–face border, both using local and
global metrics. Our definition of the hand–face border was auto-
mated, reproducible, relied on statistical metrics, and the border
could be identified with different structural markers (i.e., quantita-
tive T1, T1w/T2w-ratio, and T2*). Similar structures exist in nearly
related primates (see below), and because of different develop-
mental phases of extremities and head nerves, sensory and motor
nerves of the same body part representation across the sensori-
motor border may be phylogenetically closer than sensory and

motor nerves within sensory or motor cortex (Flechsig 1920). The
classification of hand and face areas as meso-maps would be in
accordance with the atlases as proposed by Flechsig (1920) and
von Economo and Koskinas (1925), but is in disagreement with the
Brodmann atlas (Brodmann 1909). More analyses, in particular
those including genetic markers, structural connectivity, and post-
mortem data are needed for final clarification.

Our findings imply that body parts may be an important organ-
izing principle, similar to the distinction between sensory and
motor processing. Besides myeloarchitecture (Flechsig 1920), cyto-
architectonic features within area 3b and area 4 are also not
homogenous (von Economo and Koskinas 1925). In fact, it is pos-
sible that hand and face areas may actually have mosaic origins
(Flechsig 1920). This would be similar to birds, where wing and
neck representations are located in distant and separate telence-
phalic fields (Funke 1989). Reducing the thickness of myelin
sheaths, which reduces the frequency and speed of neuronal sig-
nal flow along axons (Pajevic et al. 2014; Grydeland et al. 2015),
may be a particularly efficient way to enforce modality-specific
body part separation and functional specialization. Decreased cell
density, which, similar to the reduced thickness of myelin sheaths
also causes an increase of the T1 signal, may limit the amount and
complexity of information conveyed across the hand–face border
(Collins et al. 2010). The structural separation of body parts within
the samemodalitymay allow the development of specialized skills,
both ontogenetically and phylogenetically, such as flying and sing-
ing in birds, or tool use and language production in humans.

This provides a new perspective on the architecture of the
sensorimotor system. For example, it is often assumed that
humans are uniquely flexible in adapting topographic maps
based on environmental influences in early development, in the
course of learning, after cortical or peripheral damage, or with
advancing age (Cohen et al. 1993; Aglioti, Bonazzi, et al. 1994,

Figure 5. Relationship between cortical myelination and whole-brain intrinsic functional connectivity networks. (A) Intrinsic functional connectivity (seed-based) of

averaged group images (HCP). Seeds were placed within primary somatosensory cortex (area 3b) and primary motor cortex (area 4). Numbers correspond to vertex

locations as displayed in (B). (B) Cortical myelination (T1w/T2w) displayed on an averaged group image. Seeds were placed at every fourth vertex starting from the

vertex with the global myelin minimum. Seed locations are marked as black dots on inflated surface.
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Aglioti, Cortese, et al.1994; Borsook et al. 1998; Calford 2002;
Pleger et al. 2003; Cooke and Bliss 2006; Bedny et al. 2015).
However, this has most often been conceptualized as a process
that takes place within the boundaries of area 3b and/or area 4.
Instead, our data indicate that human topographic maps in sen-
sory and motor cortices have internal boundaries that may limit
plasticity in much the same way that we imagine plastic change
being limited by boundaries between nominal cortical areas.
This may have implications for therapeutic interventions in the
sensorimotor domain, such as those applied after stroke, after
central damage, in the elderly (Dinse et al. 2006), after limb
amputation (Makin et al. 2013), or in people with spinal cord
injury (Jain et al. 1997; Saadon-Grosman et al. 2015), where cor-
tical map architecture relates to symptom severity.

Our data question the widespread concept of a “soft-wired
brain.” The degree to which cortical myelin boundaries in the
animal brain limit plastic reorganization in the cortex has
been a subject of debate (Jain et al. 1997, 1998, 2001; Sereno
2005). However, a recent definitive study showed that in mon-
keys with chronic lesions of the dorsal column of spinal cord
that had resulted in large-scale map reorganization of hand
and face representations in area 3b, nevertheless showed a
striking absence of new intracortical projections across the
hand–face border (Chand and Jain 2015). Even if few novel con-
nections may appear (Liao et al. 2016), this indicates that map
reorganization may be driven more by changes at subcortical
(or higher cortical) levels, and that cortical boundaries between
major body part representations may limit plastic reorganiza-
tion at the level of the primary sensorimotor cortex. Our data
provide evidence for a similar anatomical substrate in the
human brain, which may explain recent observations of pre-
served topographic map architecture in sensorimotor cortex
after sensory loss due to amputation (Makin et al. 2013, 2015;
Kikkert et al. 2016).

Our investigation has shown complex relationships between
cortical layer-specific myelination, functional topographic
maps, and resting state signal fluctuations in the living, human
individual. Area 3b as a sensory input area receives its main
input from the thalamus in cortical layer IV, whereas area 4 as
a motor output area receives input in somewhat more superfi-
cial cortical layers. Cortical myelin reductions at the hand–face
border were significant in middle cortical layers in area 3b, and
in more superficial cortical layers in area 4. Note that whereas
the area by layer interaction was significant in area 4, it was
not significant in area 3b, which makes the results of area 3b
more exploratory. Our data, however, give a first indication that
cortical layer-specific myelin reductions may respect input
structures in area 3b and area 4. Output structures, on the other
hand, were only captured by area 4, as evidenced by the signifi-
cant reduction of cortical myelin in its deep cortical layers, per-
haps encompassing the output layer V. This may indicate
segregated signal input in area 3b with reduced feedforward
specificity toward its output layers. The high evolutionary pres-
sure on motor output specificity, that is, to clearly control hand
and face movements, might have resulted in myelin reductions
in area 4 input and output layers to aid separation. If confirmed
by future studies (note that we had a relatively low number of
participants for the layer-dependent analyses, n = 7), cortical
layer-specific myelin reductions may provide a novel structural
marker for fine-grained neuronal signal differentiation within
early sensory and motor cortices.

Cortical zones of reduced myelin between adjacent body
part representations have been identified in the rodent and
monkey sensorimotor cortex. Here, these zones are called septa

(Woolsey and Van der Loos 1970; Welker and Woolsey 1974;
Welker 1976; Land and Simons 1985; Furuta et al. 2009). In the
well-described “barrel cortical field,” area 3b septa, located in
the input layer IV, divide the representations of single whiskers
on the rodent’s face (Welker 1976; Simons 1978). Septa also
exist between other body part representations, such as the
hand and face (Welker 1976; Fang et al. 2002), different parts of
the face (Welker 1976; Jain et al. 2001), and—in the monkey—
between single finger representations (Jain et al. 1998; Qi and
Kaas 2004). Septa demonstrate reduced lateral neuronal con-
nections to nearby parts of the cortex (Chapin et al. 1987;
Hoeflinger et al. 1995; Kim and Ebner 1999; Fang et al. 2002) and
often mark sharp functional borders between adjacent body
part representations (Welker 1976; Chapin and Lin 1984). The
structures we identified here offer striking similarities to septa
as identified in animal brains. Whether borders of reduced cor-
tical myelin also separate other body part representations in
humans, as in monkeys and rodents, remains to be clarified.
Our data indicate further structural borders within the hand
representation of area 3b and superior to the representation of
the hand in area 4 (see Fig. 1). Glasser et al. (2016) provide evi-
dence that also eyes, trunk, and lower limb representations
may contain distinct structural and functional features.
However, the authors assigned these representations the status
of a subarea (Glasser et al. 2016).

T1-based image contrast was used here to map cortical mye-
lin in vivo. But how valid is this measure? A recent study
showed that cortical myelination contributes about 64% to
quantitative T1 image contrast, whereas the contribution of
iron is about 30% (Stüber et al. 2014). T1 mapping is also largely
unaffected by the direction of myelinated fibers (Stüber et al.
2014), and interregional variation in manganese concentration
does not parallel the interregional variation of T1 values in
human cortex (Gelman et al. 2001). Though there are other
influences on T1 contrast, cortical myelin is likely the major
underlying contribution to the microstructural differences illu-
strated here. Definite answers, however, regarding the neuronal
structures underlying the observed in vivo effects can only be
provided by postmortem descriptions of cortical myelo- and/or
cytoarchitecture (Flechsig 1920; von Economo and Koskinas
1925), ideally combined with MR imaging (Caspers et al. 2006),
and detailed maps of receptor architectures (Caspers et al.
2015). In addition, diffusion-weighted imaging at ultra-high
field may be used to differentiate T1 signal change driven by
axonal diameter and axonal density (De Santis et al. 2016).

Area 3a, which resides deep within the central sulcus and
mainly receives input from proprioceptors, separates area 4
from area 3b. Area 3a was not investigated here, which will be
required to generalize our findings across the sensorimotor
domain. It is also worth mentioning that our study did not
allow a specific skin-surface localization of the detected struc-
tural border. Future studies should delineate whether the
detected border separates the thumb from the lower face, as
we assume, or the thumb and lower face from the lip (Manger
et al. 1997). Whole-body mapping techniques will be crucial for
further addressing this aspect of cortical topography (Zeharia
et al. 2015; Sood and Sereno 2016).

Our data suggest that human primary somatosensory cor-
tex and primary motor cortex should no longer be regarded as
homogenous areas. Instead, they appear to be subdivided into
distinct cortical fields, each representing a major body part,
and separated by borders of reduced cortical myelin. This con-
firms early speculations by Flechsig (1920) about a topo-
graphic parcellation scheme in humans, and is in line with
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recent evidence suggesting other subdivisions and parcella-
tions of Brodmann’s original map (Amunts and Zilles 2015;
Glasser et al. 2016). The findings here offer new mechanistic
insights into sensory and motor cortical functions in health
and disease.
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