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Do dopaminergic reward structures represent the expected utility
of information similarly to a reward? Optimal experimental design
models from Bayesian decision theory and statistics have pro-
posed a theoretical framework for quantifying the expected value
of information that might result from a query. In particular, this
formulation quantifies the value of information before the answer
to that query is known, in situations where payoffs are unknown
and the goal is purely epistemic: That is, to increase knowledge
about the state of the world. Whether and how such a theoretical
quantity is represented in the brain is unknown. Here we use an
event-related functional MRI (fMRI) task design to disentangle in-
formation expectation, information revelation and categorization
outcome anticipation, and response-contingent reward processing
in a visual probabilistic categorization task. We identify a neural
signature corresponding to the expectation of information, involv-
ing the left lateral ventral striatum. Moreover, we show a tempo-
ral dissociation in the activation of different reward-related
regions, including the nucleus accumbens, medial prefrontal cor-
tex, and orbitofrontal cortex, during information expectation
versus reward-related processing.

ventral striatum | reward | expected value of information | fMRI | Bayesian
optimal experimental design (OED)

Is information valuable only if it predicts reward? What is the
role of dopaminergic structures in representing expected in-

formation about uncertain events? While searching for in-
formation may be intrinsically rewarding (1, 2), whether parts of
the reward system represent expected information independent of
external payoffs is unknown. Ventral striatum (VS), other sub-
cortical (midbrain), and cortical (ventromedial prefrontal, orbi-
tofrontal, anterior cingulate) regions form a reward circuit (3). Of
particular interest is the VS, which includes nucleus accumbens
(NAcc) and ventral putamen. The VS participates in many cog-
nitive and affective processes; however, the extent to which the VS
represents valence, salience, or other processes is debated (4–11).
Whether the VS represents predictive information about the
world’s structure, valuing information on its own, is unknown.
Animal and human studies implicate VS in reward-based

learning (3, 12–16). Dopaminergic cells in the substantia nigra
(SN) and ventral tegmental area (VTA) that project to the VS
respond to reward-predicting cues and unexpected rewards.
Smaller- or larger-than-expected rewards suppress or increase
firing rates (15–18). Reinforcement learning theories posit that
reward prediction error (RPE) forms a teaching signal that up-
dates the expected value of choices (13, 19, 20).
In human functional MRI (fMRI) studies, VS activations scale

with RPE (3, 8, 21). VS blood-oxygen level-dependent (BOLD)
responses and midbrain dopaminergic neuronal firing are corre-
lated (22), supporting an RPE interpretation of the VS. However,
RPE exemplifies “model-free” learning: That is, learning without
an explicit model of the environment (14, 23). In contrast, “model-
based” learning involves building a predictive model describing the

expected transitions between states given each possible action in
those states (23, 24). Recent evidence shows both model-free and
model-based responses in the VS (25, 26). NAcc lesions impair
behavior driven by goals’ motivational value, resulting in habitual,
stimulus-driven behavior (12). This suggests that both re-
inforcement and goals drive the VS (10).
Dopamine is also linked to information. Macaque dopami-

nergic midbrain neurons signal both expectation of information
about upcoming water rewards and expected reward amount
(27–29).
Do reward structures such as the VS represent expected in-

formation about things other than reward, such as categorical
structure in the world? Or is processing of information solely tied
to reward expectation? Optimal experimental design (OED)
theories from Bayesian decision theory provide a normative
theoretical framework for quantifying the usefulness of expected
information in situations without explicit external payoffs
(30–32). OED models quantify the usefulness of information
expected to result from an experiment, test, or query, before the
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medial prefrontal cortex, and orbitofrontal cortex. These results
suggest expected information and immediate reward are
distinct in the brain.
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outcome of that query is known, when the goal is purely epi-
stemic (i.e., reducing uncertainty about the state of the world).
OED theories have successfully modeled people’s eye move-
ments and explicit queries (33–38). However, the neural sub-
strates underlying the expected usefulness of information for
reducing uncertainty about different hypotheses about the world
are unknown.
We created an event-related fMRI design to disentangle the

processing of information expectation, information revelation
and response-contingent outcome anticipation, and feedback, in
a probabilistic visual categorization task. We found that bilateral
NAcc responds to advance information as a predictive cue for
subsequent reward, with a prediction-error response during
feedback. Left lateral VS, extending into the ventral putamen,
selectively signals information expectation, without modulation
by feedback. This suggests a dissociation between information
and reward, and a VS role in information processing beyond
reward-based reinforcement. Crucially, our results disentangle
the value of information regarding upcoming rewards from
expected information for predictions about the world, in-
dependent of subsequent reward reinforcement or feedback.

Results
Before the fMRI study, subjects learned to categorize stimuli
where two features (claw or eye) were differentially predictive
(85% or 60%) of the category (Fig. 1 A and B). Our event-
related fMRI design (Fig. 1C) separated events into: 1) A blur-
red feature cue that predicted high (HI) or low (LO) in-
formation; 2) the revealing of the actual feature, categorization,
and anticipation of response-contingent feedback; and 3) receipt
of positive or negative feedback. This allowed us to differentiate
the neural substrates underlying information expectation
(InfoExpect), information revelation and categorization out-
come anticipation (RevealAnticip), and rewarding (positive or
negative) feedback.

Behavioral Results. All subjects achieved the stringent perfor-
mance criterion during pre-fMRI behavioral training (Materials
and Methods), choosing the optimal category in 98% of the last
200 training trials. All subjects correctly ranked the 85% feature
as more informative than the 60% feature and correctly identi-
fied the more likely species, given each individual feature (Ma-
terials and Methods).
Subjects chose the more-probable category (the optimal re-

sponse) within the allowed 1,500 ms in the vast majority (94.4%)
of fMRI trials. In 4.0% of trials, responses were not on time.
Only 1.6% of trials involved on-time selection of the less-
probable category, given the presented stimulus.

fMRI Activations. During InfoExpect, subjects anticipated in-
formation of greater or lesser usefulness. Although it was already
possible to anticipate the eventual level of classification accu-
racy, either 85% or 60%, the categories were equally likely
during this stage and the most likely category could not be de-
cided until information in the form of the specific feature would
be revealed. Once the feature was revealed, subjects could cat-
egorize the stimulus as A or B, and started anticipating response-
contingent feedback. The Feedback stage consisted of a smiley
face emoticon for a correct classification, or a frowny face
emoticon for an incorrect classification. fMRI results show only
optimal response trials; suboptimal trials were modeled using a
nuisance regressor.
Fig. 2 shows group BOLD activations (P < 0.005, k = 25)

from the whole-brain general linear modeling (GLM) analysis
for each trial phase, contrasting 1) HI versus LO InfoExpect
(InfoExpect_HI-LO); 2) revelation of the HI versus LO Info feature
and response-contingent feedback anticipation (RevealAnticip_
HI-LO); and 3) positive versus negative feedback (Feedback_

POS-NEG). During InfoExpect (Fig. 2A), the bilateral VS (in-
cluding the NAcc) BOLD responses were significantly stronger
to InfoExpect_HI than InfoExpect_LO. Additional regions
revealed by the InfoExpect_HI-LO contrast included the left
posterior putamen and regions not typically considered dopa-
minergic reward areas: The bilateral superior temporal sulcus
(STS), anterior left superior frontal gyrus (SFG), left superior
frontal sulcus (SFS)/SFG, left posterior parahippocampal gyrus,
right cerebellum and cerebellar vermis, and right superior oc-
cipital gyrus (SI Appendix, Table S1).
In contrast, RevealAnticip_HI-LO activated a distinct set of

brain regions from InfoExpect (Fig. 2B). RevealAnticip_HI ac-
tivated the bilateral medial prefrontal cortex (MPFC)/rostral
anterior cingulate cortex (rACC), bilateral posterior cingulate
gyrus, left middle frontal gyrus/SFS, left posterior insula, left
caudate, right cerebellar vermis, and right STS significantly more
than RevealAnticip_LO (SI Appendix, Table S2). Importantly,
the VS showed no modulation by RevealAnticip_HI-LO. Low-
ering the statistical threshold to a lenient α = 0.01, uncorrected,
revealed seven voxels in the left NAcc, extending laterally into
the left putamen, which did not survive cluster correction. No
modulation by RevealAnticip_HI-LO was observed in the right
NAcc even at an uncorrected α = 0.05 threshold.

A

B

C

Fig. 1. Stimuli and trial design. (A) Example stimulus to be categorized as
species A or B during behavioral training. (B) Two versions of each feature
were used: claw1 = connected, claw2 = open; eye1 = dark, eye2 = dotted.
Each image displayed one of the four possible claw–eye combinations, with
different probabilities of category A or B. (C) An example event-related fMRI
trial. Event durations were jittered between 1 and 7 TRs (1.5 to 10.5 s); av-
erage durations indicated in seconds.
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Fig. 2C shows significantly higher activations following receipt
of a smile versus frown (Feedback_POS-NEG). This contrast
revealed the bilateral NAcc together with several regions pre-
viously implicated in reward processing, including the bilateral
posterior cingulate gyrus, left orbitofrontal cortex (OFC), left
frontal pole, right MPFC, right posterior insula, as well as visual
and memory-related regions (right superior occipital gyrus, bi-
lateral fusiform gyrus, bilateral hippocampus) (SI Appendix,
Table S3).
The partially overlapping yet separate brain activations seen

during InfoExpect, RevealAnticip, and Feedback suggest that
expectation of information for categorization, and expectation
and receipt of reward following categorization may be repre-
sented by distinct neural substrates. In particular, the NAcc ap-
pears to be involved in both expectation of useful information
(InfoExpect_HI) and receipt of rewarding feedback (Feed-
back_POS), but not in expectation of response-contingent out-
come/reward (RevealAnticip).
The MPFC, posterior cingulate, OFC, and other reward-

related regions participate in reward anticipation and outcome
processing, but not in information expectation, revealing distinct
neural substrates for information expectation and reward pro-
cessing. SI Appendix, Fig. S4 shows additional percent signal-
change plots from these areas.
Importantly, BOLD activation differences between InfoExpect_HI-

LO could be due either to differential deactivation relative to
baseline, or to more positive (above-baseline) BOLD responses.

We used a region-of-interest (ROI) analysis (Materials and
Methods) in the left and right VS to calculate percent signal
change during each trial phase. Voxels that differed significantly
from baseline during either InfoExpect_HI or InfoExpect_LO
were selected; this revealed only positive BOLD activations in
the left lateral VS (Fig. 3, red), specifically for InfoExpect_HI,
and only negative BOLD activations in the right VS/NAcc
(Fig. 3, yellow, extending bilaterally into both NAcc nuclei),
specifically for InfoExpect_LO. Fig. 3 B, Left shows that the left
lateral VS was more active during InfoExpect_HI both versus
InfoExpect_LO and versus baseline; that is, the difference be-
tween InfoExpect_HI-LO is due to positive BOLD activations
for InfoExpect_HI [paired two-tailed t test InfoExpect_HI versus
InfoExpect_LO: t(9) = 4.14, P = 0.003]. (Note that ROI selec-
tion was orthogonal to the HI versus LO t test by selecting voxels
versus baseline rather than only voxels significant for HI versus
LO, thereby avoiding biasing P values with multiple testing.)
Positive BOLD activations during InfoExpect_HI extended lat-
erally from the left NAcc to ventral putamen.
In contrast, the right VS/NAcc (Fig. 3 B, Right) was inhibited

or deactivated versus baseline, with significantly more negative
BOLD responses to InfoExpect_LO than to InfoExpect_HI
[paired two-tailed t test, t(9) = 2.53, P = 0.03]. This deactivation
to InfoExpect_LO was centered on the right NAcc but extended
medially toward the contralateral (left) NAcc (i.e., bilaterally). In
other words, the left lateral VS is positively activated by expec-
tation of a more informative stimulus, whereas the right VS/
NAcc is modulated during the InfoExpect stage via greater de-
activation versus baseline for InfoExpect_LO than for InfoEx-
pect_HI (see also SI Appendix, Figs. S1–S3).
Fig. 3 B, Right also shows that the right VS/NAcc displayed a

similar suppression pattern during feedback (reward receipt).
Right VS/NAcc activation was not significantly different from
baseline during Feedback_POS [paired two-tailed t test t(9) =
−0.28, not significant], but was significantly suppressed or
deactivated during Feedback_NEG, similar to when the less in-
formative cue (InfoExpect_LO) was received [paired two-tailed
t test Feedback_POS versus Feedback_NEG, t(9) = −6.98, P <
0.0001]. This is consistent with neuronal firing results in pri-
mates, where negative prediction error (reward expected, but not
received) leads to suppressed neuronal firing (15, 16).
Other than the left lateral VS, the left posterior putamen,

cerebellar vermis, and bilateral STS also showed both greater
positive (above-baseline) BOLD responses to InfoExpect_HI
and were significantly more active for InfoExpect_HI than for
InfoExpect_LO (SI Appendix, Fig. S4 and Table S1). SI Appen-
dix, Fig. S5 shows reverse contrasts (LO-HI) for InfoExpect,
RevealAnticip, and Feedback_NEG-POS. No brain region was
significantly more active for InfoExpect_LO-HI.
The above results show that VS subregions respond differen-

tially to information expectation versus reward receipt. The right
VS/NAcc appears to be treating expectation of information as a
predictor for trial-by-trial reward. In contrast, the left lateral VS
is significantly modulated only during the InfoExpect stage, and
does not show an RPE-type modulation in the Feedback stage.
To further explore the activations in the left lateral VS and

right VS/NAcc, we calculated theoretical response profiles across
the trial stages, for each experimental condition, for hypothetical
expected information gain (IG) and RPE models (Fig. 3 C and D
and SI Appendix, Supplementary Results). The stages of the trial
were split according to information level or type of feedback and
included InfoExpect_HI, InfoExpect_LO, RevealAnticip_HI,
RevealAnticip_LO, Feedback_POS, and Feedback_NEG.
We correlated group-average BOLD percent (BOLD%) signal

change in each trial stage, in the left lateral VS and right VS/NAcc
(Fig. 3B), with predicted responses of both the theoretical IG and
RPE models (Fig. 3 C, II, Fig. 3D, and SI Appendix, Supplementary
Results). We used both the group-averaged BOLD% signal change

A

B

C

Fig. 2. Group BOLD activation contrasts during the three different stages of
each trial: (A) InfoExpect, (B) RevealAnticip, (C) Feedback. (A) Red-to-yellow:
Brain areas more active for HI than LO InfoExpect, when subjects view the
blurry feature cue but cannot yet classify (species A versus B). (B)
Green-to-light-green: Areas more active for Revelation of HI than LO Info
features and concomitant response-contingent outcome anticipation when
the species is categorized. (C) Blue-to-light-blue: Areas more active for
positive than negative feedback (smile versus frown). Abbreviations: a, an-
terior; L, left; NEG, negative feedback (frown emoticon); POS, positive
feedback (smile emoticon); post. cing., posterior cingulate; R, right. Cross-
hairs are centered on left NAcc, to show lack of NAcc modulation during
RevealAnticip. Colors represent different trial stages, not positive/negative
BOLD signal.
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data, and within-subject-ranked data (i.e., by ranking the magni-
tude of the percent signal change for each subject across the six
trial stages) in these analyses. In the group data, the left lateral
VS’s Pearson correlation with the IG model was r = 0.845, and
with the RPE model was r = 0.386. In the right VS/NAcc, the
data’s correlation with the RPE model was r = 0.780, and with the
IG model was r = 0.557. In the ranked data, the left lateral VS’s
Pearson correlation with the IG model was r = 0.830, and with the
RPE model was r = 0.280. In the right VS/NAcc, the average
correlation with the RPE model was r = 0.877, and with the IG
model was r = 0.484 (Fig. 3E). Thus, both the group-average data
correlations and the individual-subject ranked data correlations
suggest that the IG model better explains the left lateral VS, and
the RPE model better explains the right VS/NAcc.
Given variability in BOLD magnitude and correlation strength

in individual subjects, we also conducted further analyses of the
single-subject ranked data in relation to the theoretical IG and
RPE models (SI Appendix, Supplementary Results). To check
which theoretical model better explained an individual subject in
a particular ROI, we took that subject’s data’s correlation to the
IG model minus the correlation to the RPE model. In the left
lateral VS, 7 of 10 individual subjects showed higher correlation
with the IG model than with the RPE model (95% CI for cor-
relation difference, −0.029 to 0.533). (The reported 95% CI was
obtained by bootstrap sampling, with 1 million samples with
simple bootstrap, taking individual subjects’ IG–RPE difference
scores as inputs.) In the right VS/NAcc, 8 of 10 individual sub-
jects showed higher correlation with the RPE model than with
the IG model (95% CI for correlation difference −0.350
to −0.057, by bootstrap sampling). We also used bootstrap
sampling of the whole dataset to further explore which theo-
retical model better accounts for each area, again measuring the
difference between the data’s correlation with the IG and RPE
models (SI Appendix, Supplementary Results). In the left lateral
VS, in 95.83% of 1 million bootstrap samples of the dataset, the
IG model better explained the data than the RPE model (SI
Appendix, Fig. S6, Left). In the right VS/Nacc, in 99.83% of the 1
million bootstrap samples, the RPE model explained the data
better than the IG model (SI Appendix, Fig. S6, Center).
To address whether there could be differential sensitivity to

information versus reward between the two ROIs, irrespective of
whether a particular ROI correlates more highly with the IG or
RPE model, we conducted further analyses of the ranked data
(SI Appendix, Supplementary Results). We computed the differ-
ence (as described above) in each subject’s data’s correlation to
the IG model, minus the correlation to the RPE model, in each
ROI. We then took the left lateral VS difference score and
subtracted the right VS/Nacc difference score from it, thus giving
a differential information sensitivity score. In 9 of 10 individual
subjects, this differential information sensitivity score was posi-
tive [95% CI for differential information sensitivity score 0.198
to 0.685, by bootstrap sampling; two-tailed paired t test t(9) =
2.90, P = 0.0176]. We also conducted this analysis in bootstrap
sampling of the whole dataset (SI Appendix, Supplementary Re-
sults). In 99.81% of 1 million bootstrap samples, the differential
information sensitivity score was positive (SI Appendix, Fig.
S6, Right).
In summary, our results suggest that different neural mecha-

nisms process expectation of information, expectation of reward
(outcome), and receipt of reward. The left lateral VS signals the
informativeness of a cue but does not participate in reward
(feedback) processing, whereas the NAcc signals both the in-
formation value of a cue and RPEs.

Discussion
Using a probabilistic visual categorization task and whole-brain
event-related fMRI, we identified distinct temporal and spatial
processing signatures of regions subserving information expectation,

A

B

C

D E

Fig. 3. fMRI BOLD results and percent signal change from the left and right
VS and model predictions for hypothetical IG versus RPE responses. (A)
Group BOLD activations (P < 0.005, whole-brain cluster threshold = 25
voxels) in left and right VS. Red: Left VS ROI selected based on InfoExpect_HI
versus baseline. This contrast revealed only positive BOLD activations, all in
the left lateral VS, extending laterally from the left NAcc to the left ventral
putamen (left crosshairs, centered on MNI x = −22, y = 8, z = −10). Yellow:
right VS ROI selected based on InfoExpect_LO versus baseline. This contrast
revealed only negative BOLD activations (yellow) in the right VS, centered on
the right NAcc, extending medially toward the left NAcc (right crosshairs,
centered on MNI x = 6, y = 6, z = −8). Blue: Significant activations for
Feedback_POS > NEG (smile > frown), shown superimposed. These over-
lapped the bilateral NAcc, but not the left lateral VS. (B) Percent signal
change plots for the left and right VS ROIs (Left and Right, respectively)
during each trial stage (see legend). Error bars represent SEM. [“:-)” repre-
sents “smile” and “;-(“ represents “frown”.] C, I shows the response profile
of a hypothetical brain area that responds exactly in accord with the RPE
model. For calculations used to derive this response profile see SI Appendix.
C, II depicts the response profile of a hypothetical RPE brain area, shifted so
that the maximum level of activation is zero. (D) The response profile of a
hypothetical brain area that responds exactly in accord with the IG model.
For calculations used to derive this response profile, see SI Appendix. (E) The
correlation between the hypothetical RPE and IG models and the left lateral
VS and right VS/NAcc ROIs, respectively. Error bars represent SEM, obtained
via bootstrap sampling.
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information revelation and response-contingent outcome anticipa-
tion, and feedback processing.
The InfoExpect stage predicts HI or LO information and

expected classification accuracy, but provides no information
about the stimulus’s category. Categorization can only occur upon
revelation of the specific feature. Following categorization,
response-contingent positive or negative feedback can be antici-
pated (RevealAnticip stage). The Feedback stage then allows for
prediction error calculation. Statistical OED models state that the
value of expected information can be calculated before the specific
feature is revealed. Importantly, the left lateral VS was modulated
by the value of expected information but not by reward receipt,
consistent with key predictions of the OED models.
Average classification accuracy, and hence the probability of

positive or negative feedback, can be anticipated, and do not
change, during the InfoExpect (blurry feature) and Revea-
lAnticip (feature revelation and categorization) stages. From the
perspective of OED models, however, the former stage repre-
sents curiosity about a category (or query, or experiment, or
test), whereas the latter stage represents curiosity satisfied, since
the feature that predicts which category will be most likely has
now been revealed. Since the expected performance accuracy did
not change between the InfoExpect and RevealAnticip stages,
whereas brain activations did, this suggests that it is not simply
the anticipated response accuracy, but curiosity about the stim-
ulus’s category modulating brain activations to these two stages.
This would be akin to two different medical tests being used to
diagnose a disease as A or B, with one test having a higher ac-
curacy than the other. It is not just anticipation of the particular
accuracy prior to executing the medical test, but also curiosity
about the actual diagnosis, that matters. The differential re-
sponses in the left lateral VS and right VS/NAcc support this
distinction between the value of expectation of information and
outcome of a query, as predicted by OED models.
The right VS/NAcc (extending bilaterally) indicated sensitivity

to different levels of expected information by deactivating versus
baseline for LO compared to HI Info expectation. Moreover, the
NAcc responded to subsequent feedback with a prediction error-
like response, showing deactivation for negative feedback, and
no modulation versus baseline for positive feedback. This is
consistent with subjects expecting mostly positive feedback
across trials, since HI and LO features led to ∼85% and 60%
correct categorizations, respectively. Although the relationship
between negative BOLD responses and neuronal inhibition is
not fully established, BOLD deactivations correlate with de-
creases in multiunit activity, whereas positive BOLD responses
correlate with an increase in neuronal firing and postsynaptic
potentials (39). The similarity of negative BOLD during negative
feedback to macaque neuronal firing suppression for negative
prediction errors supports an inhibition interpretation of the
right VS/NAcc negative BOLD response. In contrast, the left
lateral VS showed greater positive BOLD responses during HI
versus LO InfoExpect and showed no prediction-error response
(no modulation) during feedback, selectively signaling higher
information expectation with increased BOLD activity versus
baseline. This suggests a functional difference between the left
lateral VS and NAcc. Specifically, the left lateral VS is involved
in information expectation, distinct from an RPE mechanism.
Subject payment was independent of classification perfor-

mance. Subjects consistently chose the optimal category, for both
LO and HI Info features. Thus, anticipation during the
InfoExpect stage is not related to expectation of greater mone-
tary gain. However, the blurry cue did already predict higher or
lower accuracy. Could left lateral VS activation during InfoEx-
pect be due to anticipation of classification accuracy or positive
feedback? The left lateral VS was only modulated during
InfoExpect, but not during RevealAnticip or Feedback. If an-
ticipatory activity in the left lateral VS during InfoExpect were

simply predictive of more correct performance, positive or neg-
ative feedback should modulate its activity, as in the right VS/
NAcc. No such prediction error-type response was observed in
the left lateral VS. This suggests that the left lateral VS is excited
by, or “values,” information for its own sake. The left lateral VS
ignored noisy probabilistic trial-by-trial feedback while main-
taining optimal categorization performance, consistent with
model-based learning (10) and with macaque basal ganglia rep-
resentations of long-term object-value independent of immedi-
ate reward outcome (40). Ultimately, valuing information could
be adaptive for overall survival fitness, regardless of noisy
probabilistic feedback (1). Crucially, our results suggest that
distinct neural substrates process expected information value
versus reinforcement feedback, and that information expectation
does not fully overlap with general reward expectation.

Nonhuman Neurophysiology and Connectivity. Our results are also
consistent with macaque neurophysiology in related brain areas.
Monkeys strongly prefer advance knowledge in a task where cues
predict different amounts of information about upcoming water
rewards, despite advance information not affecting the reward
amount (28). However, recordings in lateral habenula neurons
show decreased firing to cues that predicted more information,
similar to their response to large versus small rewards (28).
Habenula neurons inhibit dopamine neurons, responding to
negative events while being inhibited by positive events (41).
Macaque dopaminergic midbrain neurons show enhanced firing

to advance information about food and drink rewards, and RPE-
type responses upon reward receipt (27), similar to our right VS/
NAcc results. Ventral striatal BOLD activations correlate with
excitatory dopaminergic input from midbrain nuclei (22). Our VS
activations are consistent with dopaminergic inputs modulated by
expectation of advance information. Importantly, the left lateral
VS modulation by InfoExpect but not by Feedback in our study
suggests a different functional role compared to the midbrain (27),
lateral habenula (28), and orbitofrontal neurons (29), which re-
spond both to cues signaling advance information about food or
water rewards, and to unexpected rewards or the absence of re-
wards. Our study identifies an information-specific response in-
dependent of trial-by-trial reward feedback.
Anatomically, the VS is heterogeneous, with differences be-

tween subregions such as the core and shell (12), and different
activation patterns depending on which limbic and cortical inputs
are integrated in different contexts (5). Our medial-lateral sub-
division of the VS is in line with recent macaque ex vivo high-
resolution diffusion tensor MRI findings (42), which demon-
strated that the VS contains medial, lateral, ventral, and dorsal
subdivisions. Whereas the medial tractography-based subdivision
corresponds well to the histological NAcc, the lateral tractography-
based VS region corresponds to the histological “neurochemically
unique domains of the accumbens and putamen (NUDAPs),”
which show a unique pattern of u- and k-opioid as well as D1-like
dopamine receptors (42). This tractography-based medial-lateral
distinction in the macaque matches our fMRI activations, sug-
gesting a lateral VS–NAcc subdivision in humans. Moreover, the
finding that the lateral “NUDAPs-like” VS region contains a
unique signature of opioid and dopamine D1-like receptors, which
in our study was activated by the anticipation of information but
not by simple rewards, such as positive trial-by-trial reinforcement,
suggests that information may indeed function as a different type of
reward that is processed by a specific combination of dopamine
and opioid receptors different from those found in other parts of
the reward system.
The tractography-based subdivisions between lateral and me-

dial parts of the VS could be due to different topographical
connections from the VTA (43). In the mouse midbrain this area
has been found to include functionally diverse clusters of spa-
tially organized dopaminergic neurons representing sensory,
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motor, and cognitive variables, as well as RPEs based on mul-
tiple factors, such as trial difficulty and previous trial outcomes.
Our NAcc results may thus reflect a mixed RPE signal, while the
left lateral VS may represent a different mixture of perhaps more
cognitive and sensory signals.

Probabilistic Categorization: Accuracy and Internal Feedback Signals.
NAcc involvement in our task is consistent with neuropsychological
and neuroimaging findings that similar neuronal mechanisms are
involved in reward prediction and in incremental, feedback-based
learning of probabilistic categories (44).
Although basal ganglia are typically involved in habitual

stimulus–response associations or reward-driven habits, the VS
shows both model-free and model-based responses (10, 14, 20, 26,
44). The VS is more activated by correct than incorrect perfor-
mance in n-back working memory tasks, even without external
feedback or reward, and even in trials without motor responses
(45). This is consistent with our InfoExpect activations, since HI
Info features are more likely to lead to correct categorization.
A VS response independent of external feedback was also

observed in an observational learning task where subjects
learned to categorize stimuli into two categories by observation
alone, with the category label presented before each stimulus (8).
The VS showed greater activity for correct than incorrect cate-
gorization trials, even without external feedback. Moreover, the
VS and putamen were more activated for error trials in which
subjects indicated greater confidence than usual, suggesting
sensitivity to internally generated confidence signals. Our event-
related fMRI study disentangles probabilistic information ex-
pectation from categorization and feedback. Our results extend
these findings and dissociate between prediction error signals in
the NAcc, and information expectation independent of feedback
in the left lateral VS.

Instrumental Versus Noninstrumental Information Seeking. Is expec-
ted information in our study a type of instrumental information
(i.e., information that shapes learning by guiding future actions)?
Whereas instrumental information is the reduction of uncertainty
regarding which action to take next (e.g., ref. 46), noninstrumental
information seeking (e.g., refs. 47–50) involves wanting to find out
about an outcome (e.g., whether a reward will be obtained or not),
even if there are no more actions to take that could change the
outcome. Curiosity-based information-seeking (9) is also a form of
noninstrumental information seeking. Trivia questions about
which participants are more curious lead to greater activity in the
VS, SN, VTA, and cerebellum (9). This increase in activity occurs
during anticipation of interesting information (i.e., during antici-
pation of answers), but not during presentation of answers, at
which point curiosity is satisfied. This is consistent with our
stronger VS and cerebellar activation for more informative cues
during the InfoExpect than during the RevealAnticip stage.
OED models attempt to quantify the value of expected in-

formation independent of outcomes (30, 31, 34, 37 ), which
would seem noninstrumental. However, OED models quantify
the expected usefulness of a query or test (e.g., a medical test)
before that test is carried out, with the implication being that one
could then choose between different tests by calculating each
test’s a priori expected informational value. This assessment of
the expected usefulness of possible future tests, and the quanti-
fication of the expectation of such information could also be
conceived as instrumental, because it would lead to the choice of
one test over another, or in our case one category over the other.
Given that the outcome (feedback) did not change our subjects’
behavior on the next trial (since our subjects followed optimal
choice strategies and ignored trial-by-trial feedback, as did the
left lateral VS), one could argue that the valuation of in-
formation in our experiment is independent of outcomes and as
such is noninstrumental. We would argue that gathering

information is ultimately adaptive and as such rewarding, and
that this is a case of long-term instrumental information seeking
that is not necessarily reflected in immediately following actions.
Future work could address such subtle distinctions between these
different types of information seeking.

Salience Versus Valence.Our results extend the “incentive salience”
view of the VS (4, 6). The VS is equally activated by anticipation
of uncertain gains, uncertain losses, and certain gains, with lower
activations during certain losses; thus, neither valence nor salience
alone explain the VS (6).
Dopaminergic midbrain (VTA/SN) regions have been found to

track valenced (positive or negative) information prediction errors
(IPEs), for example, when probabilistic information about a pos-
sible monetary win or loss is promised but not delivered (51). In
contrast, in that study NAcc only tracked traditional RPEs, con-
sistent with our NAcc results. (Note that our study did not involve
IPEs: If, for example, a blurry 85% cue was presented in the initial
trial stage, then an 85% information cue always followed.) In-
terestingly, no neural representation of IPEs independent of va-
lence were identified (51), suggesting that perhaps the brain tracks
simpler information-related representations rather than an IPE
per se. The information expectation signal we obtained in the left
lateral VS is consistent with this interpretation.

Parietofrontal Networks.Our BOLD activation contrast InfoExpect_
HI-LO did not show posterior parietal activations typical of atten-
tion networks (52–55) or motor preparation (56–58). This is con-
sistent with all stimuli being presented foveally, with no need for
spatial target selection. Attention has also been found to bias
striatal RPEs during learning, and to correlate with a frontoparietal
network during attentional switches between different valuable
stimuli (59). However, in our task, learning occurred well prior to
fMRI scanning, with subject behavior at ceiling, and only one
stimulus was presented at a time, rather than requiring choosing
between multiple stimuli (59). Moreover, greater sensory un-
certainty stimuli (more difficult, equivalent to the LO Info feature)
activate parieto-frontal networks more strongly than easier
stimuli (the equivalent of the HI Info feature) (58). In contrast,
we found no attention network or posterior parietal modulation
by either LO or HI InfoExpect. Moreover, there was no VS
modulation during RevealAnticip, when attentional demands
should increase, given the need to categorize the stimulus at
that point. Attention is thus unlikely to explain our results.
There are many different kinds of salience, potentially repre-
sented by different striatum subregions (6), consistent with the
functional heterogeneity we report. Moreover, there is evidence
that attention for value is distinct from attention for action and
attention for learning (53).
Two recent macaque neurophysiology studies investigated the

lateral intraparietal (LIP) area’s role in representing expectation
of instrumental information (information that guides subsequent
actions) versus reward (46, 54). In the first study (54), monkeys
made two saccades on each trial: The first saccade was to a cue
located either outside or inside the neuronal receptive field,
upon which a field of dots would start moving either up or down,
indicating whether the upper or lower saccade target was correct;
the second saccade was to the target indicated by the cue’s dot
motion. A colored border around the cue indicated its validity,
namely a probability of 100%, 80%, or 55% that the cue’s up or
down motion correctly indicated the correct (rewarded) di-
rection of the final saccade. The second study (46) used a similar
task, except that the cue to which the first saccade was made was
either informative, correctly indicating the saccade target, or
uninformative, with the correct saccade target being known in
advance. In addition, reward size was manipulated to be either
large or small.
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Both studies (46, 54) found that prior to the first saccade, LIP
neurons encode the expected instrumental information (in-
formation gain) that the saccade to the first cue is expected to
bring for the following action: That is, how useful the first sac-
cade is expected to be in reducing uncertainty about which next
action (saccade up or down) would be rewarded. Importantly,
neuronal information gain sensitivity was unrelated to neuronal
reward sensitivity; moreover, many LIP cells showed enhanced
firing for smaller rather than larger rewards. These results show
that in situations demanding active sampling via eye movements,
area LIP is involved in representing the expectation of in-
strumental information, and that this expected information gain
can indeed be separated from reward per se. This is consistent
with our study, in which information-gain sensitivity was also
dissociable from reward sensitivity, in our case in the VS. In our
study, we did not use an oculomotor decision-making task, and
there was no active sampling; rather, all targets and in-
formational cues were presented foveally. Thus, while the LIP
may be part of a priority map implementing the required cog-
nitive effort in an active information-sampling context (46), our
lack of active sampling may explain the absence of LIP and pa-
rietal activations, and suggests that perhaps for situations where
information is presented foveally and simply needs “digested”
passively (rather than actively sought out via sequences of ac-
tions), different neural substrates may represent the expectation
of useful information.

Other Reward-Related Regions. In addition to the VS, other reward
circuit regions (3, 11) were activated across different trial stages,
including the MPFC, OFC, and posterior cingulate cortex (PCC)
(Fig. 2 and SI Appendix, Fig. S4). The MPFC and PCC were
modulated by feature informativeness during RevealAnticip and
by Feedback, but not during InfoExpect, in contrast to the left
lateral VS and right VS/NAcc. The OFC showed modulation by
Feedback_POS > NEG, similar to the right VS/NAcc, but was
not involved in InfoExpect or RevealAnticip (SI Appendix, Fig.
S4). This temporal dissociation of different reward circuits is
consistent with different processes being active during in-
formation expectation than during response-contingent outcome
anticipation, suggesting that the left lateral VS is not simply
anticipating positive feedback during the InfoExpect stage. The
ACC/MPFC, which in our study were activated during the
RevealAnticip stage but not during the InfoExpect stage, have
previously been correlated with reward anticipation (60). This
supports our interpretation of (response-contingent) reward
anticipation occurring during the RevealAnticip stage but not
during the InfoExpect stage, even though the general accuracy
could be anticipated during both of those stages.

Alternative Explanations. A study of facial attractiveness found
nonlinearities in the responses of the NAcc, lateral OFC, VTA,
and other parts of the reward circuit (61). Could our results be
explained by nonlinearities in reward processing? We used an
event-related task design to separate different stages of pro-
cessing; due to the long trials that this required, we used two
levels of information expectation (HI and LO) and two levels of
reward (smile or frown). Nonlinearities in the reward or in-
formation expectation response could thus be hard to uncover in
our dataset. Future experiments could employ a range of in-
formation and reward levels to examine whether there are
nonlinearities in information expectation or reward coding.
Could temporal discounting explain our results? Although we

did not compensate subjects according to their performance,
subjects could have valued overall experimental performance
more greatly than trial-by-trial feedback. However, the temporal
discounting reported in animals and humans usually involves
devaluing (discounting) larger but temporally more distant re-
wards, relative to smaller immediate rewards (62). If temporal

discounting were to apply in our data, then immediate smile
or frown feedback on a trial should have led to greater acti-
vation (or deactivation) than the possibility of better overall
performance throughout the whole experiment. This is not
what we found in the left lateral VS, where the presentation of
the probabilistic blurry information expectation cue that in-
formed optimal overall performance throughout the experi-
ment led to higher activation than trial-by-trial smile or frown
feedback. Thus, a generalized valuation of information is a
more plausible explanation of our left lateral VS results than
temporal discounting.

Summary. Using an event-related fMRI task we dissociated in-
formation expectation, information receipt, and response-
contingent outcome anticipation, and feedback processing, dur-
ing probabilistic categorization. Lateral aspects of the left VS
signaled information expectation independent of reward feed-
back, whereas the NAcc was modulated during both InfoExpect
and Feedback stages. This suggests dissociation between in-
formation and immediate reward in different VS subregions, and
that probabilistic information for classification is different from
rewards such as food, money, or positive feedback.

Materials and Methods
Participants. Ten right-handed participants with normal or corrected-to-normal
vision (6 males; ages 22 to 33 y; mean 25.7 y) gave informed consent and were
paid for their time. The study protocol was approved by the University of
California, San Diego Institutional Review Board.

Behavioral Prescanning Task and Stimuli. Subjects implicitly learned the rel-
ative usefulness of two different features via an experience-based multiple
cue probabilistic classification task (35, 63). The initial behavioral training
session took place 1 to 4 d before the fMRI experiment in 9 of 10 subjects,
with refresh training immediately before scanning, to ensure effective
learning of the probabilistic task (SI Appendix, Supplementary Methods).

During behavioral training subjects classified images of plankton-like
stimuli (Fig. 1A) as either “species A” or “species B” by pressing one of
two buttons with their right hand. The category (A or B) of each stimulus
depended in a probabilistic way on two binary features (eye and claw),
which could each take one of two forms (eye1, eye2, and claw1, claw2)
(Fig. 1B). In each trial, a specimen was chosen at random, with 50/50 prob-
ability for each category. Immediate feedback on the true species was then
provided via a smile or frown emoticon. Note that feedback depended on
whether the correct species was chosen in a given trial, not on whether the
optimal classification choice was made. Due to intrinsic uncertainty in the
probabilistic task environment, the maximal possible classification accuracy
was 85%. Thus, choosing the optimal (most probable) species, given the
stimulus provided, led to negative feedback in 15% of trials on average.
Learning was self-paced, with no time constraints.

Subjects could achieve 85% classification accuracy using the more in-
formative feature and 60% using the less informative feature alone, for
either A or B (SI Appendix, Supplelmentary Methods). Which feature (eye or
claw) was most informative, and which feature version (e.g., eye1 or eye2)
tended to predict species A, was counterbalanced across subjects.

The number of training trials was adapted automatically by the software
according to each subject’s performance. Training continued until the sub-
ject achieved a stringent learning criterion, namely 1) choosing the most-
probable category given the presented stimulus in 98% of the last 200 trials,
and 2) choosing the most-probable category in all five of the most recent
presentations of each of the four stimulus configurations. This learning cri-
terion (35, 63) was chosen to ensure that participants had good implicit
understanding of the probabilistic task (SI Appendix, Supplementary
Methods). In addition, participants’ explicit knowledge of the features was
tested. Participants were asked to indicate, for each version of each feature
(version 1 or 2 of the claw and the eye), whether that feature (if viewed
alone) would tend to indicate A or B. Participants were also asked which
feature, if viewed alone, would be more useful on average. All subjects
correctly ranked the 85% feature as more informative than the 60% feature
and correctly identified the more likely species, given each individual feature
value. This is consistent with previous behavioral results (63), suggesting that
our experience-based training method can meaningfully convey environ-
mental statistics on probabilistic classification tasks.
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fMRI Task and Stimuli. Following behavioral refresh training, subjects par-
ticipated in an event-related fMRI task. Subjects were asked to categorize
stimuli based on one foveally-presented feature in each trial (eye or claw).
Each trial (Fig. 1C) started with a variable-duration fixation cross (baseline),
followed by presentation of a blurred eye or claw image. The blurry feature
image revealed no information whatsoever about the true feature version
that followed (i.e., the exact same blurry eye image was used, irrespective of
whether eye1 or eye2 would subsequently be presented). This InfoExpect
stage thus allowed subjects to expect receiving either more useful (HI Info)
or less useful information (LO Info) for categorization in the next phase. The
best classification choice (species A or B) was maximally uncertain before the
specific feature was revealed. Furthermore, species A and B were each
the best choice for classification in half of the trials. This ensured that prior
to seeing the revealed feature subjects could not anticipate a species A or B
response, preventing specific motor preparation. Although the specific
classification decision could not be anticipated in this stage, the anticipated
level of classification accuracy could be anticipated (i.e., 85% or 60%, in the
case of the HI or LO information-predicting blurry cue, respectively).

The specific feature version was then revealed, allowing subjects to choose
category A or B, and to then immediately start anticipating positive or
negative choice-contingent feedback depending on the probability of the
most likely category. Since revelation of a specific feature immediately
triggers response planning and response-contingent outcome anticipation,
this stage was termed the RevealAnticip stage. Subjects then received
feedback, as described above (Feedback stage). Subjects were required to
respond within 1,500 ms of the specific feature version being revealed, using
a button box (right index or middle finger, counterbalanced across subjects).
To ensure subjects were able to respond within the allotted time, subjects
practiced the fMRI task for at least one fMRI-length run before scanning.
Subjects preferentially chose the more-likely species for each feature in the
fMRI practice runs, for HI Info and LO Info features alike.

The informativeness of each blurry feature cue (which predicts HI or LO
Info) can be quantified using OED (34, 38) or heuristic (64) models. Expected
probability gain (classification error minimization) emerged as the most
psychologically plausible model in a related behavioral task (35). Expected
probability gain of the HI Info cue is 0.35 and of the LO Info cue is 0.10 (SI
Appendix, Supplemental Methods). We designed the probabilities in our
experiment so that other models (38) would also agree with the ranking of
the HI and LO cue (e.g., expected information gain of HI cue = 0.39 bits, LO
cue = 0.03 bits; expected impact of HI cue = 0.70, LO cue = 0.20).

The fMRI experimentwas programmed in PsychToolbox 3.0.8, and run on a
Windows XP Pro SP3 Dell laptop. Stimuli subtended a square ∼3 × 3° of visual
angle and were projected on a screen attached to the scanner bore, viewed
via a mirror attached to the headcoil.

Each functional run lasted 480 s (320 repetition times [TRs]; 1 TR = 1,500
ms) and contained 32 trials. Each event’s duration was jittered according to a
geometric distribution, (minimum = 1 TR, truncated to maximum = 7 TRs per
event). The geometric distribution provides for maximal uncertainty about
event duration and allows for separation of the hemodynamic response to
each event (58). To prevent visual anticipation of when the revealed feature
would disappear, the presentation duration of the revealed feature was also
jittered (Fig. 1). The mean event durations were: baseline, 3.8 s ; InfoExpect,
3.3 s; RevealAnticip, 2.6 s each (these two events were combined into one
period, as explained above); Feedback, 2.6 s. Each run’s sequence of stimuli
was unique for each subject.

MRI Data Acquisition. Imaging was performed at the Center for fMRI, Uni-
versity of California, SanDiego (3T GE scanner; 8-channel head coil; functional
imaging parameters: echoplanar T2* gradient echo pulse sequence, 23
contiguous axial slices, interleaved, bottom-up order, 3.44 × 3.44 × 5-mm
voxel size, 64 × 64 matrix, echo time [TE] = 31.1 ms, flip angle [FA] = 70°, TR
= 1,500 ms, 320 volumes/functional run, bandwidth = 62.5 kHz; six dummy
volumes; structural imaging parameters: T1-weighted MPRAGE, 1 × 1 ×
1-mm voxel size, 256 × 256 matrix). Most subjects (7 of 10) completed five
functional runs; two subjects completed four functional runs; due to tech-
nical difficulties, one subject completed only two functional runs.

fMRI Data Analysis. fMRI analyses were carried out using the FMRIB Software
Library (FSL 4.1; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/index.html). Standard

fMRI preprocessing was performed (brain extraction, motion correction,
grand mean intensity scaling, prewhitening, high-pass filtering >100 s, slice
timing correction, and spatial smoothing [8 mm full-width half-maximum
Gaussian kernel]). In each subject, all functional images were first regis-
tered to the middle image of the middle functional run (or the run following
the midpoint, for subjects with an even number of runs), followed by reg-
istration to the subject’s high-resolution anatomical scan via a six-parameter
rigid body transformation, using FMRIB’s Linear Image Registration Tool.
Registration to standard space (Montreal Neurological Institute, MNI) was
carried out with FMRIB’s Nonlinear Image Registration Tool. Statistical
analyses were performed using FMRIB’s GLM analysis tool FEAT.

A whole-brain first-level GLM analysis modeled the following regressors
using boxcar functions (length = each event’s duration): InfoExpect_HI,
InfoExpect_LO, RevealAnticip_HI, RevealAnticip_LO, Response, Feedback_-
POS_HI, Feedback_POS_LO, Feedback_NEG. Events where a frown emoticon
followed either the 60% or 85% probabilistic stimulus were modeled as a
single Feedback_NEG regressor, due to very few trials in which a frown
emoticon followed 85% stimuli. The response regressor was orthogonalized
with respect to RevealAnticip_HI and RevealAnticip_LO. Temporal deriva-
tives were added to the model for each regressor. Premature, late, or sub-
optimal responses (i.e., choice of the less-probable category given the
stimulus) were captured by three additional regressors of no interest
(InfoExpect_incorrect, RevealAnticip_incorrect, Feedback_incorrect). The
model additionally included six motion-correction parameters. Regressors
were convolved with a preset double-γ hemodynamic response function.
Contrasts of interest were computed using linear combinations of regressors,
including: InfoExpect_HI-LO, RevealAnticip_HI-LO, Feedback_POS_HI-LO,
Feedback_POS (HI+LO), Feedback_POS-NEG. Functional runs were combined
in a fixed-effects second-level analysis per subject. Data were averaged
across subjects using FMRIB’s FLAME1+2 mixed-effects third-level analysis.

ROI Analysis. Group-level activations were thresholded at z = 2.6 (α < 0.005),
whole-brain cluster-corrected with k = 25 contiguous voxels. One set of ROIs
was identified using the contrasts InfoExpect_HI-LO, RevealAnticip_HI-LO,
and Feedback_POS-NEG, in order to illustrate whether brain regions acti-
vated during one stage of the trial (e.g., InfoExpect) were also activated
during other stages of the trial (e.g., RevealAnticip or Feedback). For the VS,
to avoid biasing voxel selection toward one condition (e.g., InfoExpect_HI)
and to avoid biasing significance tests when contrasting percent signal
change estimates between two conditions (65), an additional set of ROIs was
selected based on functional and anatomical criteria. For the functional
criterion, in each condition (InfoExpect_HI and InfoExpect_LO), we searched
for voxel clusters (P < 0.005, k = 25) that were significantly different from
baseline (either above or below). For the anatomical criterion, voxels were
restricted to the ventral parts of the striatum (i.e., we ensured no selected
voxels were located in the caudate nucleus dorsal to the internal capsule, in
the globus pallidus, or in adjacent anatomical regions, such as the insula,
which is adjacent to the putamen). This revealed only above-baseline voxels
for InfoExpect_HI and only below-baseline voxels for InfoExpect_LO. FMRIB’s
“featquery” function was used to calculate percent signal change for each
(standard-space) ROI by scaling each regressor’s parameter estimate by the
peak to peak height of the regressor, multiplied by 100, and dividing by the
average (across runs, per subject) of the mean of the filtered timeseries.

Data Availability. The data, stimulus and analysis files are permanently ar-
chived and publicly available for download on the Open Science Framework,
doi:10.17605/osf.io/aexv9 or https://osf.io/aexv9/ (66).
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