Sparse coding in V1

Based on
Olshausen & Field (2004)

Presented by Doug Yovanovich
COGS 272
April 14 2010
V1 simple cells

- Receptive fields are:
 - Spatially localized
 - Selective by orientation
 - Selective by spatial frequency

...they are equivalent to basis functions of wavelet transforms
Previous simulations

• Using unsupervised learning:
 – PCA discovers coefficients on image data that are pairwise decorrelated
 – These are not spatially localized (they span large regions of variance in the image)
 – and do not resemble any known cortical receptive fields
• Good for images that are already gaussian and where pairwise correlations matter
• Complex lines and edges out
A new approach

- Sparseness
- Learn a set of coefficients a with a cost
 function for the number of coefficients used
- Inspired by minimum-entropy codes
 (Barlow 1989)
 - Lower the individual entropies (a’s) by
 using fewer of them at once
- Conjecture: Natural images have sparse
 structure
A new approach

- Optimize:

\[E = \text{mean square error} \quad \text{-- sparseness of } a_i \]

- Q: Is this the same as thresholding the low values to be lower and the high values higher?
A new approach

- Learned image features (Φs) evolve by gradient descent on E
- Seeking a set of Φs such that a_is can tolerate sparsification
Results

- algorithm discovered sparse structure in the data
- successfully recovered the sparse components from which the images were composed (even non-orthogonal components)
- entropy decreased
Learned image feature descriptors
Sparsity

- 'Recording' from the a_s shows more tolerance for sparsification (wider tails; solid line) as compared to initial random values (dashed line)
Conclusion

- Penalizing inefficient encoding / maximizing efficient encoding yields units with V1-like properties:
 - Spatially localizable
 - Orientation selectivity
 - Spatial frequency selectivity