Sensory Encoding of Smell in the Olfactory System of Drosophila

(reviewing “Olfactory Information Processing in Drosophila” by Masse et al, 2009)

Ben Cipollini
COGS 160
May 11, 2010
Smell Drives Our Behavior...

FOOD

SEX

and...
Food Aversion!
This Week

- Today:
 - Olfactory coding in drosophila

- Thursday:
 - Olfactory coding in mammals
 - Explore a bit (taste? pheromones? memory?)
Why Drosophila

• You can poke 'em for real cheap!
• We're REALLY good at controlling their genetics,
 - And olfaction is ALL about controlling your molecular chemistry!
• Olfactory Receptors (ORs) are highly preserved
• Processing stages through first two neurons are functionally similar with mammals
• Because flies are cute:
Today

- Gross anatomy of drosophila olfactory system
- Transduction (chemistry = bad)
- Basic Sensory Coding
 - glomeruli
- Downstream Transformations
 - Projection neurons
 - Kenyon cells
- Smells!
Gross Anatomy

Fig. 1 from Masse et al (2009)

Keene & Waddel (2007)
Gross Anatomy of Coding

- **Antenna**
 - Olfactory Receptor Neurons (ORNs)

- **Antennal lobe**
 - Glomeruli
 - Projection Neurons (PNs)
 - Local Neurons

Keene & Waddel (2007)
Cytoarchitecture of Coding

- **Antenna**
 - Olfactory Receptor Neurons (ORNs)

- **Antennal lobe**
 - Glomeruli
 - Projection Neurons (PNs)
 - Local Neurons
1st Order Neurons: ORNs

- Located in antennae and maxillary palps (~1300 per)
 - ORs are transmembrane molecules in cilia
 - Use G protein second-messenger signaling
 - Influx of Na+, K+, Ca+
 - Outflux of Cl-

- 50 “classes”
 - Express one specific set of ORs (usually OR83b PLUS 1-3 receptors)
 - Each “class” respond typically

Firestein & Menini (1999)
Tuning Curves of ORNs

2nd Order Neurons: Projection Neurons

- Live in antenna lobe (~200 per)
- Receive input from \textbf{ALL ORNs of a single class} (~50; ~25 from each side)
- Despite convergent input, show \textit{broader} odorant tuning than ORNs
- Project out to “higher centers”: mushroom body & lateral horn
Between 1st and 2nd Order: Glomeruli

- In Antenna Lobe, one per odorant “class” (50)
- Consist of:
 - Axons of ORNs
 - Dendrites of projection neurons
 - Neurites (axons and dendrites) of local neurons
- ORN inputs all from same “class”, come bilaterally
- PNs tend to innervate ONLY one glomerulus

Kandel, Jessel, Schwartz (2000)
Glomeruli: Local Neuron Connectivity

- Interglomerular EXCITATORY
 - Input from ORNs
 - Output to PNs
 - Strengths “non-uniform”

- Interglomerular (and intraglomerular) INHIBITORY
 - Input from ORNs, PNs
 - Output to ORNs, PNs
 - Interglomerular scales with ORN output strength

- “Probably all permutations exist”

Fig. 2 from Masse et al (2009)
Coding: From Odor to Behavior

- 50 odorant receptor classes to detect
- Hundreds of odorants
- Combinatorial explosion of smells (combination of odors)
- Must be population / ensemble encoding

- From odor → spikes → ensembles → behavior

3 types of cones, TrueColor displays > 16M colors
Coding: From Odor to Spikes

- Not well understood
- Each odorant has many molecular properties
- Interaction between molecular properties and spiking behavior not well understood

Fig. 3 from Masse et al (2009)
Coding: Single ORN to Ensembles

- ORNs respond to many odors
- Some ensemble firing patterns will represent odors
- **Focus of paper:** from individual ORN activity to *ensemble* PN activity

Fig. 3 from Masse et al (2009)
Coding: Ensemble Spiking to Behavior

- Not well understood
- Correlational study
 (Riffel et al, 2009)
 - Only a few odorants are necessary and sufficient to produce behavior
 - Mean firing and synchronous firing both correlate with elicitation of natural behavior

Riffel et al (2009)
Transformation I: Increasing SNR

• How?
 – Big Idea: Averaging (woo!)
 – Small Idea: Strong, reliable synapses

• Advantages: fewer synapses, faster decisions
Transformation II: Variable Gain

• Now THIS is cool!

• 200-300 spikes/s can represent 8 orders of magnitude in concentration

• *Per-glomerulus* control!

• How?

 − Short-term synaptic depression

 − Local neuron inhibition

 − Interglomerular: coordinate gain control across glomeruli

 − Intraglomerular: scale according to concentration

Fig. 5 from Masse et al (2009)
Transformation II: Variable Gain

Fig. 5 from Masse et al (2009)
Issues in Gain Control

• Low gain (high concentration): can measure changes?
 – Multiple ORNs active at high concentration
 – Variability in ORN sensitivity

• What to adjust gain-based connectivity on?
 – Most probable smells?
 – Most behaviorally relevant smells?
 – Ex. pheromone vs CO_2: gain control on pheromones, not CO_2

• Interglomerular inhibition: masking smells?
 – Strong fruit smell inhibiting pheromone scent

• Representing concentration...?
 – Changes in firing of PNs due to concentration are different for each odorant (in locust, at least...)
Decorrelation?

- ORNs responses are highly correlated
- Gain control histogram-equalizes
 - Each neuron uses its dynamic range better
 - But not all of coding space is used, due to spike correlations

- How to decorrelate?
 - If ORNs respond together, use global signal to decorrelate
 - If ORNs are more pairwise correlated, more complex lateral connections needed
 - Role for lateral excitatory cxns?
Mushroom Body and Kenyon Cells

- 150-200 PNs **diverge** to 2500 Kenyon cells
- Highly odor-specific
- Sparse coding
 - Spiking studies
 - Calcium influx
- Respond much more strongly than PNs

Keene & Waddel (2007)
Sparse Coding in Kenyon Cells

- IN THE LOCUST
 - PNs (columns) respond to most odorants; KCs (columns) respond to very few
 - “Population sparseness” - % of cells that do NOT respond to an odor (rows)
How Do Locust KCs Become Sparse?

- High convergence (400:1, 50% of PNs!)
- Weak unitary synaptic connections
- Synaptic integration in (oscillatory) time windows
- Voltage-gated channels amplify coincident spikes
- High spiking threshold (50-100 coincident PNs)
- Loss of oscillations in bees → no “fine” discriminations

Fig. 7 from Masse et al (2009)
How Do Drosophila KCs Become Sparse?

- Low convergence (10:1, 5% of PNs!)
- Strong unitary synaptic connections
- Non-oscillatory decoding
- Probably cannot sustain oscillations with 10 input neurons
- ? Integrator model / Hebbian learning?
Summary

- Drosophila olfactory system similar to mammalian
- Odorant receptor neurons (antennae) broadly tuned
- Projection neurons (antenna lobe) broadly tuned
- Glomeruli (antenna lobe) mediate SNR, gain control, and (perhaps) decorrelation, output via PNs
- Kenyon cells create sparse (oscillatory?) representations of odors
Higher Centers

• Lateral horn:
 • Sensory-motor integration
 • No MB: still discriminate
 • PN inputs highly stereotyped across animals
 • Spatial map of behaviorally relevant odorant types?

• Mushroom Body:
 • Needed for associative learning
 • Few output neurons, far from motor control
 • Perhaps useful for oscillations (but what about drosophila?)
 • Decorrelate inputs via output cell cross-inhibition?
Olfactory Generator Potentials

- **Odorant** binds to the **odor receptor**
- **Odor receptor** changes shape and binds/activates an “olfactory-type” **G protein**
- **G protein** activates the **lyase - adenylate cyclase (LAC)**
- **LAC** converts ATP into **cAMP**
- **cAMP** opens cyclic nucleotide-gated **ion channels**
- Calcium and sodium ions to enter into the cell, depolarizing the ORN
- Calcium-dependent Chlorine channels contribute to depolarization as well
Confusing Jargon

• “Transmembrane receptors … whose membrane topology is inverted compared with the … receptor superfamily that includes vertebrate odorant receptors”
 – The receptors are inverted (inside-out or upside-down?) compared to those in vertebrates!

• “Or83b … heterodimerises with other odorant receptors, is required for their trafficking to the dendrites and may act as a co-receptor”
 – Or83b may bind to other odorant receptors to improve the function of that receptor, or may help get the receptor proteins to the sensory cilia of the ORN.