Neural Basis of the Ventriloquist Illusion

Bonath, Noesselt, Martinez, Mishra, Schwiecker, Heinze, and Hillyard
Investigating the Ventriloquist Illusion

- Behavioral responses
- EEG
- fMRI
ElectroEncephaloGraphy (EEG)

- Neurons use electrical potentials to communicate.
- Multiple, aligned, synchronously-firing neurons produce enough voltage change to be read by electrodes on the scalp.
ElectroEncephaloGraphy (EEG)

- Neurons use electrical potentials to communicate.
- Multiple, aligned, synchronously-firing neurons produce enough voltage change to be read by electrodes on the scalp.
ElectroEncephaloGraphy (EEG)

- Neurons use electrical potentials to communicate.
- Multiple, aligned, synchronously-firing neurons produce enough voltage change to be read by electrodes on the scalp.
Good and bad about EEG

- Temporal resolution is great!
- Spatial resolution is not so great (scalp maps can be misleading), but methods exist for estimating sources
Event Related Potentials

EEG = Signal + trial-independent noise
fMRI - what is it?

- Angelo Mosso's 19th century balancing experiment
- Late 19th century: blood flow in dog brain
- Blood flow related to brain activity in 1948 (Kety and Schmidt).
- Hemodynamic response
How does fMRI measure bloodflow?

- Giant magnet creates magnetic field in and around head
- Hemoglobin is diamagnetic when oxygenated, paramagnetic when not
- Measuring this difference is called Blood-Oxygen Level Dependent (BOLD) imaging
Good and bad about fMRI

- Bad temporal resolution (response + imaging)
- Good spatial resolution
Questions about the tools?

<table>
<thead>
<tr>
<th>EEG</th>
<th>fMRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad spatial resolution</td>
<td>Good spatial resolution</td>
</tr>
<tr>
<td>Good temporal resolution</td>
<td>Bad temporal resolution</td>
</tr>
</tbody>
</table>
What is the Ventriloquist Illusion?

- Spurious perception of sound source at a visual event's location

How does this illusion arise?

- Knowing where and when the illusion arises can tell us about how the visual and auditory signals are integrated for localization.

- Look at EEG and fMRI to find the origins
Experimental Set-up

- Ignore visual stimuli, report location of sound
- Also included blank condition

<table>
<thead>
<tr>
<th></th>
<th>Audio Left</th>
<th>Audio Center</th>
<th>Audio Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Left</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Visual Right</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Behavioral Results

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Respond Left %</th>
<th>SEM</th>
<th>Respond Center %</th>
<th>SEM</th>
<th>Respond Right %</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_L</td>
<td>69.0<sup>a</sup></td>
<td>3.3</td>
<td>27.2</td>
<td>2.8</td>
<td>3.0</td>
<td>0.8</td>
</tr>
<tr>
<td>A_C</td>
<td>11.6</td>
<td>1.6</td>
<td>69.3<sup>a</sup></td>
<td>2.8</td>
<td>18.2</td>
<td>2.6</td>
</tr>
<tr>
<td>A_R</td>
<td>2.3</td>
<td>0.7</td>
<td>20.7</td>
<td>1.8</td>
<td>75.5<sup>a</sup></td>
<td>2.2</td>
</tr>
<tr>
<td>A_{CV_L}</td>
<td>32.4<sup>b</sup></td>
<td>4.9</td>
<td>57.2<sup>a</sup></td>
<td>4.4</td>
<td>8.8</td>
<td>1.5</td>
</tr>
<tr>
<td>A_{CV_R}</td>
<td>6.1</td>
<td>1.2</td>
<td>55.8<sup>a</sup></td>
<td>4.5</td>
<td>36.3<sup>c</sup></td>
<td>4.9</td>
</tr>
<tr>
<td>A_{LVR}</td>
<td>51.7<sup>a</sup></td>
<td>4.7</td>
<td>34.8<sup>d</sup></td>
<td>3.0</td>
<td>12.3<sup>e</sup></td>
<td>4.2</td>
</tr>
<tr>
<td>A_{RVL}</td>
<td>12.6<sup>f</sup></td>
<td>4.2</td>
<td>28.1<sup>g</sup></td>
<td>2.6</td>
<td>58.1<sup>a</sup></td>
<td>4.3</td>
</tr>
</tbody>
</table>
Revealing Multimodal Interaction (ERP)

- Difference waveform
 - $(AcVr + \text{blank}) - (Ac + Vr)$

- Blank added to account for prestimulus common response

- Multimodal waveforms separated by behavioral response
 - $(AcVr)_{\text{illusion}}$ and $(AcVr)_{\text{no-illusion}}$
Difference Waveform Components

- P 180 - Symmetrical in all conditions
- N 260 - Lateralized in illusion trials, not in no-illusion trials
fMRI Modulations

AV stimuli:
No illusion > Illusion:

A stimuli:
Contralateral > Central:

Dipolar Sources of N260

Illusion trials:
No illusion trials:
Lateralization

- Contralateral activation same for illusion trials as for when sound actually came from the illusory location

- Response found in Planum Temporale
 - What is the Planum Temporale?
Planum Temporale

- Responsible for acoustic spatial representation
N 260

- Previously noticed in audio-visual interaction, but not associated with localization

- Latency suggests feedback from higher multisensory areas
 - Retinotopic activity in extrastriate occipital cortex 80-120ms
 - Location-specific audio-visual interactions 140-190ms in occipito-temporal and parietal regions
 - Superior temporal cortex around 200ms
Attention? Probably not

- Lateralization may be due to attentional orientation to perceived sound location
- No differential BOLD response in attentional areas (anterior cingulate, posterior parietal cortex) between illusion/no-illusion trials
- Other behavioral results suggest visual attention has little influence on illusion
Response bias? Probably not

- Maybe audio perceived the same, but response drawn to visual location

- However, significant increase of responses to C when visual and audio presented on opposite sides

- Also, observed hemispheric differences in auditory cortex imply difference in perception
Behavioral Results Again (no response bias?)

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Respond Left %</th>
<th>SEM</th>
<th>Respond Center %</th>
<th>SEM</th>
<th>Respond Right %</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_L</td>
<td>69.0a</td>
<td>3.3</td>
<td>27.2</td>
<td>2.8</td>
<td>3.0</td>
<td>0.8</td>
</tr>
<tr>
<td>A_C</td>
<td>11.6</td>
<td>1.6</td>
<td>69.3a</td>
<td>2.8</td>
<td>18.2</td>
<td>2.6</td>
</tr>
<tr>
<td>A_R</td>
<td>2.3</td>
<td>0.7</td>
<td>20.7</td>
<td>1.8</td>
<td>75.5a</td>
<td>2.2</td>
</tr>
<tr>
<td>$A_{C}V_L$</td>
<td>32.4b</td>
<td>4.9</td>
<td>57.2a</td>
<td>4.4</td>
<td>8.8</td>
<td>1.5</td>
</tr>
<tr>
<td>$A_{C}V_R$</td>
<td>6.1</td>
<td>1.2</td>
<td>55.8a</td>
<td>4.5</td>
<td>36.3c</td>
<td>4.9</td>
</tr>
<tr>
<td>$A_{L}V_R$</td>
<td>51.7a</td>
<td>4.7</td>
<td>34.8d</td>
<td>3.0</td>
<td>12.3e</td>
<td>4.2</td>
</tr>
<tr>
<td>$A_{R}V_L$</td>
<td>12.6f</td>
<td>4.2</td>
<td>28.1g</td>
<td>2.6</td>
<td>58.1a</td>
<td>4.3</td>
</tr>
</tbody>
</table>
Neural Basis of Ventriloquist Illusion

- Illusion accompanied by contralateral response in auditory cortex

- Similar to response when sound actually comes from illusory location

- Response occurs between 230-260ms after stimulus onset

- Therefore: Auditory information is present very early, but localization itself may depend on longer time scales
 - Example of early information: MMN present for illusory shift of sound source