1. Monocular rivalry is the use of one image for both eyes and you can see 2 different possible images within the one picture. Binocular rivalry when each eye is viewing a dissimilar image and the two images compete for perceptual dominance of an image.(1)

2. Binocular rivalry is important to studying conscious awareness because you can’t really control which image you see but are aware of the change in perception. There has to be a fluctuation in visual process based on consciousness because the stimulus itself isn’t changing but the image seems to change for those perceiving it creating a dominant and suppressed stimulus(1).

And so the changes in neural activities corresponding to different perceptual states can only be due to changes in perceptual awareness and not due to changes in sensory input.

3. Stimulus strength, attention, and visual context can extend dominant periods. If an image is more salient(high contrast) than the image will be dominant longer compared to a less salient image. Attention can extend dominant periods as one really focuses on the dominant image but even with internal will power one cannot keep only one image to be dominant. Congruent extended visual context influences predominance more so than incongruent. All these things imply that the dominance and suppression rely on distinct neural processes(2-3).

4. They tag the visual evoked response(VER) wavelengths associated with the two rival gratings by modulating the contrast of oriented gratings at different rates. They were able to track the VERs with the observer's press of a button to indicate which image was being perceived. With this process they were able to find that the amplitude of these wavelength were inversely related. When the dominant wavelength was high the suppressed wavelength was low thus establishing a correlation of brain signal and perception, although this does not say where rivalry happens in the brain.(5)

5.

6. Binocular rivalry does not have after effects like other suppressive visual adaptations like the tilt aftereffect and the motion aftereffect. These aftereffects stem from global adaptation involving mechanisms in the cortical areas, so binocular rivalry must involve more local adaptation or is already processed by the time the suppression/dominance occurs. (4-5)

+.5

7. Binocular rivalry activity is present within the FFA and PPA. In these areas in the dominant and suppressed correlated BOLD signals are inverse to each other. When the house is dominant the BOLD activity is high in the PPA and the signal in FFA is low. This implies that the rivalry has been resolved before the information has reached these areas because the change of signal is clearly correlated to the dominant perception and doesn’t seem to compute anything. (6)

+1