COGS 202: HW 4

Attempt these problems on your own. Solutions will be presented by an assigned group next Monday.

1. (Math) Given the observations x_1, \ldots, x_t, iid samples from hidden random variable $s \in \{s_1, s_2\}$, and assuming the prior over s is uniform ($P(s = s_1) = P(s = s_2) = .5$), show that the log posterior ratio is a sum of the individual log likelihood ratios:

$$\log \frac{p(s_1|x_1, \ldots, x_t)}{p(s_2|x_1, \ldots, x_t)} = \sum_{i=1}^{t} \log \frac{p(x_i|s_1)}{p(x_i|s_2)} \tag{0-1}$$

2. (Math) Assume that each x_i is generated from s independently via a Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$, where $\mu = 2$ if $s = s_1$, and $\mu = -2$ if $s = s_2$:

$$p(x|s) = \mathcal{N}(\mu_s, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)²}{2\sigma²}}.$$

(a) (Matlab) Generate 500 samples of x for $s = s_1$, and $\sigma \in \{5, 6, 8, 10\}$. For each σ, plot a histogram of the empirical distribution of x. Is the distribution widest for the largest σ?

(b) (Math) Show that the log likelihood ratio, $d_i := \log \frac{p(x_i|s_1)}{p(x_i|s_2)}$, is

$$d_i = \frac{-(x_i - \mu_1)^2 + (x_i - \mu_2)^2}{2\sigma²}.$$

(c) (Matlab) For each σ, plot a histogram of the log likelihood values $\{d_i\}$ corresponding to the 500 $\{x_i\}$ values generated in (a); indicate the sample mean and standard deviation for each. Why is the distribution widest for the smallest σ?

3. (a) (Matlab) Assume the same generative model as the last problem, generate 80 sequences of x_i (100 samples in each sequence) for $s = s_1$, and $\sigma \in \{5, 6, 8, 10\}$. For each σ, plot the average cumulative log likelihood ratio as a function of samples within a sequence (from 1 to 100); use different colored lines in the same figure.

(b) (Math) Suppose that the cumulative log likelihood ratio after observing x_1, \ldots, x_t is $r_t = \sum_{i=1}^{t} d_i$, show that the posterior probability is $P(s = s_1|x_1, \ldots, x_t) = \frac{\exp(r_t)}{1 + \exp(r_1)}$.

(c) (Matlab) Convert the average cumulative log likelihood ratio for each data point in (a) to posterior probability, and plot this quantity for the different σ in the same figure.

(d) (Math) Formally derive the probability distribution over d_i as a function of the prior $P(s_1)$, σ, and μ, assuming a Gaussian generative model as before. Are these properties reflected in your simulation results?

4. (a) (Matlab) Use same generative model as the last two problems. For each σ, use Matlab to generate as many samples as necessary until the cumulative log likelihood ratio r_i first crosses the threshold $z = \exp(\eta)/(1 + \exp(\eta))$ or $-z$; where $\eta = 0.95$. Decide $s = s_1$ if z is first crossed, and $s = s_2$ if $-z$ is first crossed; record the number of samples required to exceed the threshold as the "response time" τ_i for that "trial." Simulate 50 such "trials", and plot the empirical histogram of the "accuracy" for each σ. Separately, plot the empirical histogram of the "response time" for each σ.

(b) (Math) You should have found that the "response time" increases for increasing σ, but the accuracy
is approximately the same. Prove why the accuracy should be η or slightly bigger, and independent of σ.

(c) (Matlab) Assume the cost function to be

$$l(\hat{s}, s) = (1 - \delta_{s, \hat{s}}) + c\tau$$

Let $c = 0.005$. We will try to find the optimal stopping threshold z^* that minimizes the cost function. Set z to different values corresponding to probabilities between 0.5 and 0.95, in small increments, generate 50 trials of data, and evaluate the cost function in each trial; compute the average cost function for each z and find the value of z that minimizes the average loss function. Now set $c = 0.05$ and see how that changes the optimal z^*. You should find that z^* decreased for larger c, why?