Sequential effects: Superstition or rational behavior?

Erin L. Smolak, Shuai Tang, Mehul M. Shah
Sequential effects: Superstition or rational behavior?

Angela J. Yu
Department of Cognitive Science
University of California, San Diego
ajyu@ucsd.edu

Jonathan D. Cohen
Department of Psychology
Princeton University
jdc@princeton.edu
Introduction

● Superstitious behavior
 ○ Inappropriate linking of events (occurs in many situations)
 ○ Detect spurious patterns in truly random data
 ○ Observed in human and non-human subjects
 ○ Subjects pick up on patterns within a randomized experimental design
Introduction

● Sequential effect
 ○ Subjects’ responses are facilitated/speeded when a stimulus follows a pattern (e.g., AAAA or ABAB)
 ○ Responses are slowed when a stimulus breaks a pattern (e.g., AAAB)
 ○ Stronger effect for longer patterns
 ○ Error rates follow similar pattern (not due to accuracy - RT trade-off)
Experimental procedure: two-alternative forced-choice task

Objectives

● Bayesian probability theory
 ○ Build models for predicting stimuli based on previous trials
 ○ Compare to participant behavior

● How can these computations be implemented by neural hardware?
 ○ Computationally simpler algorithm approximating Bayes-optimal prediction
Bayesian Prediction

Two internal models

----Fixed Belief Model (FBM)

----Dynamic Belief Model (DBM)
Fixed Belief Model

A **fixed** probability γ of encountering a repetition ($x_t = 1$) on any given trial t.

The posterior probability

$$p(\gamma | x_t) \propto P(x_t | \gamma) p(\gamma) = \gamma^{r_t + a + 1} (1 - \gamma)^{t - r_t + b + 1}$$

Likelihood Bernoulli distribution

Prior Beta distribution
Fixed Belief Model

\[p(\gamma, x_1, x_2, \ldots, x_t) = P(x_1, x_2, \ldots, x_t | \gamma)p(\gamma) \]

\[= p(\gamma) \prod_{i=1}^{t} P(x_i | \gamma) \]
Fixed Belief Model

The predicted probability of seeing a repetition on the next trial is actually the mean of this posterior distribution.

\[P(x_{t+1} = 1 | x_t) = \int \gamma p(\gamma | x_t) d\gamma = \langle \gamma | x_t \rangle \]

- Posterior distribution
- Expectation
Dynamic Belief Model

\[
p(\gamma_1, \gamma_2, \ldots, \gamma_t, x_1, x_2, \ldots, x_t) = p(\gamma_1) \left(\prod_{i=1}^{t-1} P(x_i | \gamma_i) p(\gamma_{i+1} | \gamma_i) \right) P(x_t | \gamma_t)
\]
Dynamic Belief Model

\(\gamma_t \) has a Markovian dependence on \(\gamma_{t-1} \)

With probability of \(\alpha \), \(\gamma_t = \gamma_{t-1} \)

With probability of \((1-\alpha)\), \(\gamma_t \) is redrawn from a fixed distribution

\[
p(\gamma_t = \gamma | \mathbf{x}_{t-1}) = \alpha p(\gamma_{t-1} = \gamma | \mathbf{x}_{t-1}) + (1 - \alpha)p_0(\gamma_t = \gamma)
\]

\[
\gamma_t = \alpha \delta(\gamma_t - \gamma_{t-1}) + (1 - \alpha)p_0(\gamma_t)
\]
Dynamic Belief Model

The predictive probability is the mean of the iterative prior

\[P(x_t = 1 | x_{t-1}) = \langle \gamma_t | x_{t-1} \rangle \]
Experiments

Two models respond differently to the same truly random binary observation.

FBM

Less variable
More accurate estimate

DBM

Driven by local transients
Experiments

Sequential effects significantly diminish

Sequential effects persist
Experiments

1/ Sequential effects persist in human behavior
2/ DBM is better than FBM.
Linear exponential filtering

- Simpler approximation than Bayes for neural hardware implementation
- Reward-tracking task observed on Monkeys
 - Subjects’ ability to track unsignaled statistical regularities
 - Depends linearly on previous observations that are discounted exponentially into the past

\[P_t \triangleq P(x_t=1|x_{t-1}) = C + \eta \sum_{\tau=1}^{t-1} \beta^\tau x_{t-\tau} = C(1 - \beta) + \eta \beta x_{t-1} + \beta P_{t-1}. \]
Linear exponential Filtering

- Regressed RTs against past observations
 - Linear coefficients decayed exponentially into the past
● (b) - Regressed P_t from Bayesian inference against past observations
● Red - set of average coefficients
● Blue - best exponential fit for data
(c) - For various α, repeat (b) and obtain best exponential decay param. (β)

Optimal β follows $\frac{2}{3}$ rule ($\beta = \frac{2}{3} \cdot \alpha$)
(d) - Both optimal exponential fit (red) and $\frac{2}{3}$ rule approximate P_t well (green = perfect match)
Linear exponential filtering

- Good descriptive model of behavior
- Good normative model approximating Bayesian inference
- How does decay rate relate to rate of change in the real world?
 - Iterative form of linear exponential filtering
 - Bayesian update rule

\[P_t \triangleq P(x_t=1|x_{t-1}) = C + \eta \sum_{\tau=1}^{t-1} \beta^\tau x_{t-\tau} = C(1 - \beta) + \eta \beta x_{t-1} + \beta P_{t-1}. \]
Pt \triangleq P(x_t=1|x_{t-1}) = C + \eta \sum_{\tau=1}^{t-1} \beta^\tau x_{t-\tau} = C(1 - \beta) + \eta \beta x_{t-1} + \beta P_{t-1}.

\[P_{t+1} = \frac{1}{2} (1 - \alpha) + x_{t-1} \alpha \frac{K_t - P_t^2}{P_t - P_t^2} + \alpha P_t \frac{1 - \frac{K_t}{P_t}}{1 - P_t} \]

\approx \frac{1}{2} (1 - \alpha) + \frac{1}{3} \alpha x_t + \frac{2}{3} \alpha P_t

- Pt \sim \frac{1}{2}
- Kt \sim \frac{1}{3}
- \beta \sim (\frac{2}{3})^* \alpha
 - Slower changes = longer integration time window
 - Faster changes = shorter memory
Drift Diffusion Model

- Better model: linear exponential filter vs. Bayesian inference
- DDM: Evidence integration underlying decision making.

- (e) - linear (blue) and Bayes (red) both model sequential adaptation well.
Neural Implementation and Learning

- Iterative linear exponential filtering
 - Equivalent to standard model of neuronal dynamics
 - Concept of eligibility trace in reinforcement learning
 - Relating outcomes to actions that were responsible

\[
P_{t+1} = \frac{1}{2}(1-\alpha) + x_{t-1}\alpha \frac{K_t - P_t^2}{P_t - P_t^2} + \alpha P_t \frac{1 - K_t}{1 - P_t}
\]

\[
\approx \frac{1}{2}(1-\alpha) + \frac{1}{3}\alpha x_t + \frac{2}{3}\alpha P_t
\]

- First term = constant bias
- Second term = feed-forward input
- Third term = leaky recurrent term
Q: How do neurons learn to set weights appropriately?
A: Stochastic gradient descent algorithm!

\[\hat{\alpha}_t = \hat{\alpha}_{t-1} + \epsilon (x_t - \hat{P}_t) \frac{dP_t}{d\alpha} \]

- Estimate \(\alpha \) via stochastic samples \(x_1, x_2, \ldots, x_t \)
(a) - Graphical model of exact Bayesian learning
● (b) - exact Bayesian learning algorithm solving for α
● Mean of posterior $p(\alpha|x_t)$ as a function of timesteps
- (c) - α converges after learning sessions using gradient descent

- Q: How can gradient be computed by neural machinery?
- Further work needed: neurons using gradient descent or other algorithm?
- (d) - posterior inference about alpha and gamma
- Alpha converges, gamma oscillates
- No correlation between one timestep and the next
Discussion

- Humans and animals must adapt their behavior to accommodate changing environments: tracking statistical trends is adaptive in this case.
- Detect patterns even in truly random stimuli.
- Weigh observations with exponential decay into the past.
 - Approximate optimal Bayesian inference.
 - Can be implemented by neural dynamics without explicit representation of probabilities.
- Subjects assume alpha = .77: changing about once every 4 trials.
 - Implications for memory span length.
Discussion

- Possibility of different learning rates in response to slower and faster changes
- Different levels of sequential effects take place at different time scales, engage different neural areas
- Current model: adaptation may be happening at different levels of processing and different time scales/rate of changes
 - Participants not conscious of rate of change
Conclusion

- Algorithms show slow learning rate when alpha = 0 (completely random)
 - Random statistics are difficult to internalize

- Difficult to differentiate between a truly randomized sequence and one that has changing biases for repetitions and alternations