letters to nature

changing their representational structure. Here we show a facilitating role of sleep in a process of insight. Subjects performed a cognitive task requiring the learning of stimulus–response sequences, in which they improved gradually by increasing response speed across task blocks. However, they could also improve abruptly after gaining insight into a hidden abstract rule underlying all sequences. Initial training establishing a task representation was followed by 8 h of nocturnal sleep, nocturnal wakefulness, or daytime wakefulness. At subsequent retesting, more than twice as many subjects gained insight into the hidden rule after sleep as after wakefulness, regardless of time of day. Sleep did not enhance insight within initial training. A characteristic antecedent of sleep-related insight was revealed in a slowing of reaction times across sleep. We conclude that sleep, by restructuring new memory representations, facilitates extraction of explicit knowledge and insightful behaviour.

The idea that sleep can trigger the gain of insight is associated with the names of famous scientific discoverers1. For example, Nobel prize winner Loewi reported that he woke up with the essential idea for an experimental confirmation of his theory of chemical neurotransmission. Mendeleyev, who laid out the periodic table of chemical elements, reported that his understanding of the critical rule underlying it emerged out of a dream following unsuccessful puzzling with the symbols of the elements. Recent studies in animals and humans provided evidence for the concept that neuronal representations of task stimuli and responses acquired during wakefulness become reactivated during subsequent sleep7–10. This reprocessing of representations is considered to underlie the consolidating effect of sleep on memory11–15, but could also be accompanied by restructuring these representations in memory to enable insight. Here, we tested whether sleep influences task representations in memory such that the gain of insight is facilitated. This was expressed in the extraction of explicit knowledge of a hidden abstract rule in stimulus–response sequences learned previously under implicit conditions.

To grasp the inherently unpredictable phenomenon of insight experimentally, we used a modified version of the Number Reduction Task (NRT; Fig. 1a) originally developed by Thurstone and Thurstone16–18. Based on continuous monitoring of subjects’ behavioural responses, the task allows the exact determination of the time point when insight occurs, that is, when explicit knowledge of a hidden abstract rule is gained, leading to an abrupt, qualitative shift in responding. On each trial of the task, subjects were asked to transform a given string of eight digits into a new string through a stepwise digit-by-digit application of two simple rules to reach a specific digit indicating the final solution to this string. With increasing practice, the subject’s responses become gradually faster on this task. Most important, however, a hidden rule was implemented in the digit strings, which was not mentioned to the subjects and was therefore initially processed at an implicit level without awareness. The time point when a subject gained insight into this rule could be determined precisely because at this time he/she would begin to cut short sequential responding to confirm the final solution in advance. All subjects were first trained on three task blocks to induce mental representations of the task that still remained implicit with regard to the hidden rule during this period. The training period was then followed by an 8-h interval of (1) nocturnal sleep, (2) nocturnal wakefulness, or (3) daytime wakefulness (Fig. 1b). Subsequently, subjects were retested on ten blocks. Sleep more than doubled the probability of gaining insight into the hidden rule compared to wakefulness. In the sleep group, thirteen out of 22 subjects (59.1%) gained insight at retesting, compared to five subjects (22.7%) in either wake group (χ2 = 8.54, degrees of freedom (d.f.) = 2, P = 0.014; Fig. 2). For subjects gaining insight, the time point of its occurrence (number of blocks after beginning of retesting) did not differ significantly between groups (sleep, 4.5 ± 0.8 (mean ± s.e.m.); wake-night, 6.8 ± 1.5;
wake-day, 6.0 ± 1.0; P > 0.28). The two nocturnal and daytime wake conditions excluded the possibility that inferior performance after wake intervals resulted from sleep deprivation or variations in circadian rhythm. Subjective ratings obtained at the beginning of retesting revealed that, as expected, subjects in the sleep condition were less tired compared to subjects tested following a wakeful night (five-point scale: 2.95 ± 0.22 versus 3.64 ± 0.25, P < 0.05), but not compared to those tested after a period of daytime wakefulness (2.41 ± 0.22, P > 0.11). This pattern excludes that the inferior performance in the wake conditions resulted from unspcific effects of tiredness.

To ensure that the influence of sleep was on memory representations established during training before sleep rather than a proactive influence on performance at retesting, in supplementary experiments subjects were tested on 13 continuous blocks either in the morning after sleep (7:00 h) or in the evening after daytime wakefulness (19:00 h), with only ten blocks included in the analysis for the direct comparison with the retest situation of the main wakefulness (19:00 h), with only ten blocks included in the analysis.

Effects of sleep and wakefulness on the occurrence of insight. Columns indicate percentage of subjects gaining insight into the hidden rule in the three experimental conditions of the main experiment (grey), in which subjects either slept (at night) or remained awake (at night or during daytime) between initial training and retesting, and in two supplementary conditions (hatched), where subjects were tested after nocturnal sleep or dayime wakefulness in the absence of initial training before these periods.

Fig. 1 Task and experimental design. a, Number Reduction Task (NRT), illustrated by an example trial. On each trial, a different string of eight digits was presented. Each string was composed of the digits ‘1’, ‘4’, and ‘9’. For each string, subjects had to determine a digit defined as the ‘final solution’ of the task trial (Fin). This could be achieved by sequentially processing the digits pairwise from left to right according to two simple rules. One, the ‘same rule’, states that the result of two identical digits is just this digit (for example, ‘1’ and ‘1’ results in ‘1’, as in response 1 here). The other rule, the ‘different rule’, states that the result of two non-identical digits is the remaining third digit of this three-digit system (for example, ‘1’ and ‘4’ results in ‘9’ as in response 2 here). After the first response, comparisons are made between the preceding result and the next digit. The seventh response indicates the final solution, to be confirmed by pressing a separate key. Instructions stated that only this final solution was to be determined and this could be done at any time. Not mentioned to the subjects, the strings were generated in such a way that the last three responses always mirrored the previous three responses. This implies that in each trial the second response coincided with the final solution (arrow). Subjects who gain insight into this hidden rule abruptly cut short sequential responding by pressing the solution key immediately after the second response. b, Experimental design (main experiment). An 8-h period of nocturnal sleep, nocturnal wakefulness, or daytime wakefulness separated an initial training phase (three blocks) from later retesting (ten blocks).

Figure 1

Figure 2 Effects of sleep and wakefulness on the occurrence of insight. Columns indicate percentage of subjects gaining insight into the hidden rule in the three experimental conditions of the main experiment (grey), in which subjects either slept (at night) or remained awake (at night or during daytime) between initial training and retesting, and in two supplementary conditions (hatched), where subjects were tested after nocturnal sleep or daytime wakefulness in the absence of initial training before these periods.
letters to nature

(F_{2,40} = 5.25, P < 0.01, for solver/nonsolver \times response type interaction). There were no similar differences between solvers and nonsolvers across the wake intervals, resulting generally in intermediate gains in reaction times (P > 0.44 and 0.14, for respective main effect and interaction; Fig. 3b). Independent of the sleep/wake conditions, the first response in later solvers as the only response was delayed compared to nonsolvers already in the last block of the initial training (F_{2,124} = 6.91, P < 0.005, for response type \times solver/nonsolver interaction). The slowing of the initial response might be related to processes of search and task analysis\(^{25}\), originating from an incipient representation of the hidden rule. Becoming particularly pronounced at retesting after sleep, this slowing could thus mean that sleep amplifies previously germinated antecedents of insight.

In conclusion, our results show that sleep acts on newly acquired mental representations of a task such that insight into hidden task structures is facilitated. Control conditions excluded the idea that this effect was due to non-specific effects of sleep deprivation, circadian rhythm, or protractive influences of sleep on subsequent capabilities of problem solving or divergent thinking\(^{21–24}\). Our reaction time data argue against the view that the qualitative change evolves from a sleep-dependent strengthening of procedural (implicit) memories, which in sequential motor tasks expresses itself in distinctly accelerated reaction times\(^{25}\). Here, sleep profoundly accelerated reaction times only in nonsolvers, but not in solvers, indicating that restructuring originates from an effect of sleep on memory representations different from those underlying procedural motor learning. Specifically, the slowing of reaction times in solvers appears to reflect the presence of an incipient representation of the rule overlapping with that required for implicit task performance. By amplification during sleep, this novel representation could eventually start to dominate the implicit memory representation, a process expressing itself in insightful behaviour as a consequence of an overall restructured representation.

The task representations associated with sleep-dependent gain of insight may be restructured by activity of the hippocampus and related medial temporal lobe structures, which, in connection with prefrontal cortical areas, are considered to play an essential role for generating awareness in memory\(^ {26–28}\). Reactivation of hippocampal cell assemblies during sleep\(^ {29–31}\) is regarded as a mechanism by which recently encoded materials stored temporarily in autoassociative hippocampal networks are played back to the neocortex where they are gradually incorporated into preexisting knowledge representations\(^ {29–32}\). This process of incorporation underlying long-term storage of previously acquired memories then forms the basis for a remodelling and qualitative restructuring of memory representations. Thus, our data support the concept that sleep, by hippocampal-neocortical replay, not only strengthens memory traces quantitatively, but can also ‘catalyse’ mental restructuring, thereby setting the stage for the emergence of insight.

Methods

Sixty-six healthy subjects (age 18–31 yr) recruited at the University of Lübeck participated in the main experiment (twenty-two in each condition) and forty (age 20–32 yr) in the supplementary experiment (twenty in each condition). There were equal numbers of women and men in all five groups. The Number Reduction Task (explained in Fig. 1a) was adopted from ref. 18. Before the experiment proper, subjects had to perform without mistakes on ten practice strings to assure correct understanding of the ‘same’ and ‘different’ rule. Each task block consisted of 30 tasks.

The hidden rule was abstract, that is, dependent on relational patterns rather than on fixed stimulus–stimulus or stimulus–response repetitions as in classical conditioning or in typical serial reaction–time tasks. In principle, insight into the hidden rule could be gained in different ways, which, however, were behaviourally equivalent and not treated separately here. The gain of insight reduced the total time to reach the final solution for a string abruptly from 8.73 ± 0.59 s to 2.39 ± 0.17 s. Post-experimental questionnaires confirmed the gain of explicit knowledge of the hidden rule in all subjects identified as solvers on the basis of their behavioural change.

In the design of the main experiment (Fig. 1b), three blocks were chosen as an initial training period based on previous work\(^ {13,29}\) and on pilot experiments indicating that at this level of task difficulty only a few subjects were able to recognize the hidden rule within this early phase. Here, five subjects gained insight into the hidden rule already during initial training and, thus had to be replaced by additional subjects. To exclude that insight into the hidden rule had taken place spontaneously between initial training and retesting, subjects were asked in a control questionnaire before retesting whether any thoughts or mentions regarding the task had occurred after initial training. No subject reported any relevant thoughts or dreams pertinent to the task.

Subjects in the sleep condition of the main experiment spent a habituation night in the sleep laboratory before participation. Sleep was monitored by standard polysomnography including electroencephalogram (from left and right central electrodes), vertical and horizontal electrooculogram, and electromyogram (from chin electrodes). Recordings were scored off-line according to standard criteria\(^ {30}\), revealing normal sleep architecture with a percentage of sleep stages 1 (1.2%), 2 (17.9 ± 1.5%), slow-wave sleep, 17.2 ± 1.5% (rapid-eye-movement sleep, 17.7 ± 1.2%).

Reaction time analyses across periods of sleep versus wakefulness (Fig. 3) were performed for correct response strings by a global 2 (sleep/wake) \times 2 (solver/nonsolver) ANOVA for sleep and wake subjects. Pairwise contrasts were specified by t-tests for statistically significant main effects and interactions. Degrees of freedom were adjusted using the Greenhouse–Geisser correction.

Received 21 August; accepted 17 November 2003; doi:10.1038/nature02223.

Figure 3 Reaction time analysis. a, b. Columns indicate changes in reaction times from the last block of initial training to the first block of retesting after eight hours of sleep (a) and wakefulness (b) for the initial response (R1, black), subsequent responses 2–4 (R2–4, grey), and responses 5–7, which were determined by the task structure (R5–7, white), separately for solvers (who later gained insight) and nonsolvers (not gaining insight). ***P < 0.001, **P < 0.01, for pairwise contrasts between solvers and nonsolvers.
Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1

Mehrdad Matloubian, Charles G. Lo, Guy Cinnamon, Matthew J. Lesneski, Ying Xu, Volker Brinkmann, Maria L. Allende, Richard L. Proia & Jason G. Cyster

Adaptive immunity depends on T-cell exit from the thymus and T and B cells travelling between secondary lymphoid organs to survey for antigens. After activation in lymphoid organs, T cells must again return to circulation to reach sites of infection; however, the mechanisms regulating lymphoid organ exit are unknown. An immunosuppressant drug, FTY720, inhibits lymphocyte emigration from lymphoid organs, and phosphorylated FTY720 binds and activates four of the five known sphingosine-1-phosphate (S1P) receptors. However, the role of S1P receptors in normal immune cell trafficking is unclear. Here we show that in mice whose haematopoietic cells lack a single S1P receptor (S1P1; also known as Edg1) there are no T cells in the periphery because mature T cells are unable to exit the thymus. Although B cells are present in peripheral lymphoid organs, they are severely deficient in blood and lymph. Adaptive cell transfer experiments establish an intrinsic requirement for S1P1 in T and B cells for lymphoid organ egress. Furthermore, S1P1-dependent chemotactic responsiveness is strongly upregulated in T-cell development before exit from the thymus, whereas S1P1 is downregulated during peripheral lymphocyte activation, and this is associated with retention in lymphoid organs. We find that FTY720 treatment downregulates S1P1, creating a temporary pharmacological S1P1-null state in lymphocytes, providing an explanation for the mechanism of FTY720-induced lymphocyte sequestration. These findings establish that S1P1 is essential for lymphocyte recirculation and that it regulates egress from both thymus and peripheral lymphoid organs.

The G-protein-coupled receptors that are engaged by the lysosphospholipid S1P are characterized most prominently for their functions in endothelial cells and for their roles in heart and vascular development. However, S1P1 and S1P4 are also highly expressed in T and B lymphocytes, and sphingosine kinase is present in lymphoid organs. To test whether S1P1 has an intrinsic role within lymphocytes, we generated fetal liver chimerae, transplanting lethally irradiated wild-type mice with day 12.5 fetal liver cells from S1P1 knockout donors. Analysis of peripheral blood from reconstituted animals revealed an almost complete absence of peripheral T cells as well as reduced numbers of B cells in S1P1-deficient (S1P1−/−) fetal liver chimaeas when compared with S1P1+/− control chimaeas (Fig. 1a, b, g). CD4 and CD8 T cells were also absent from spleen, lymph nodes and Peyer’s patches (Fig. 1c), and were not found in liver or lungs (data not shown). In contrast with this peripheral T-cell deficiency, the thymus contained normal numbers of immature CD4 and CD8 double-positive thymocytes (Fig. 1d, f) but had an increased proportion of CD4 and CD8 single-positive cells (Fig. 1d). Further analysis of the single-positive populations revealed a marked increase in the number of mature i-selectinhi cells but unchanged numbers of the immature i-selectinlo cells (Fig. 1e, f, f; see also Supplementary Fig. 1). This thymic accumulation of mature single-positive T cells is reminiscent of that seen in mice expressing the Gαi-inhibiting subunit of pertussis toxin within thymocytes and in animals treated with the immunosuppressive drug FTY720 (refs 2, 10).

In addition to high expression of i-selectin there were also greater numbers of cells expressing B7 integrin and Qa2 and expressing reduced levels of CD24 (Fig. 1e; see also Supplementary Fig. 1), additional phenotypic changes typical of mature single-positive thymocytes and CD69 was expressed at intermediate levels on the S1P1− single-positive thymocytes rather than being fully downregulated (Fig. 1e). In this regard it is notable that FTY720 treatment was recently found to downregulate CD69 on single-positive thymocytes and S1P1 was identified in a screen for negative regulators of CD69 induction in activated Jurkat T cells. Therefore, S1P1 signalling may normally promote downregulation of CD69 in maturing single-positive thymocytes. By immunohistochemical analysis, thymic architecture appeared grossly normal in S1P1− fetal liver chimaeas (data not shown).

In contrast with the peripheral T-cell deficiency, S1P1− B cells were found in spleen, lymph nodes and Peyer’s patches, and although they were altered in their proportions in these organs compared with wild-type controls, the total peripheral B-cell numbers were similar (Fig. 1h). The phenotype of peripheral B cells was normal with the exception that CD69 expression was elevated (Supplementary Fig. 2). In the bone marrow, pro/pre- and immature B cells were present at their usual frequency, whereas mature B cells that recirculate from blood to bone marrow were reduced (Fig. 1i). Therefore, peripheral B cells appeared to have accumulated in secondary lymphoid organs but seemed to be recirculating poorly. This possibility was tested further by quantification of lymphocyte numbers in lymph fluid isolated from the cisterna chyli (Fig. 1g and Methods). B-cell numbers were significantly reduced in lymph from the S1P1− fetal liver chimaeas