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1. Introduction 

 

In this paper I will outline a unified information processing framework whose goal is to 

explain how the nervous system represents space, time and objects. In the remainder of 

this introductory section I will first be more specific about the sort of spatial, temporal, and 

object representation at issue, and then outline the structure of this paper. 

 

It is standard procedure to distinguish different kinds of spatial representation, and the 

most basic distinction is between allocentric (or objective) and egocentric spatial 

representation.1 The idea is that egocentric spatial representation is how an organism 

represents its environment for purposes of perception and action. The directions involved in 

egocentric spatial representation are above, ahead, to the left, and so forth. Allocentric or 

objective spatial representation lacks any explicit reference to the organism itself: when I 

grasp the thought that the Arch d’Triomphe is between the Obelisk and the Grand Arch de la 

Defense, my spatial representation is in terms of objective spatial relations and perhaps 

objective units of magnitude as well. I will be concerned in this paper exclusively with the 

egocentric variety of spatial representation, but in order to avoid baggage connected to that 

expression in the literature, I will prefer the expression behavioral space to egocentric 

space. 

 

                                         
1 For more distinctions see Grush 2000. 



Grush Space, time and objects  p2/2 

 

A similar distinction can be made in the case of temporal representation. When I conceive of 

World War II as being after World War I, I am not thinking in terms of the temporal relation 

of those events to my current thought. The magnitudes and directions (so to speak) are 

independent of my current temporal location. By contrast, when I think that the light is 

about to turn red, or that I went through the door just a moment ago, neither the units nor 

directions (past versus future) are independent of my current temporal location and 

capacities. I may have a very good idea of when the light will turn red, but a very poor 

capacity to specify this in objective units, such as milliseconds. I will refer to the sort of time 

I am interested in as behavioral time: it is the time in whose terms the content of our 

current perception and action is given. 

 

And finally, objects can be conceived of objectively, as things not tied to my current 

perception of, or action on, them. But it is also possible to grasp objects as entities in my 

behavioral field, as things upon which I can perceive and act. I will likewise be concerned 

with the representation of such behavioral objects. 

 

Section 2 is a very brief introduction to the emulation theory of representation (more detail 

can be found in Grush 2004). This theory holds that the nervous system constructs and 

uses models of the body and environment in order to represent them in perception, action 

and imagery. It is important to note that the emulation theory itself is silent on how this 

internal model is implemented, and silent also on what sorts of things can be represented. 

It is a general architecture that describes how an internal model, or emulator, can be 

comported within a larger system to play certain kinds of roles in perception, imagery, off-

line planning, and so forth. In this paper, I will provide some details as to how the 

emulation theory can be applied to the specific cases of behavioral space, behavioral time, 

and behavioral objects, and the specific way in which this emulator is implemented neurally. 
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In Section Three I briefly describe an extension of the emulation framework for temporal 

representation (more detail can be found in Grush 2005). This is an extension of the 

emulation theory from an internal model that, at any given point in time, represents the 

target domain as it is at a point in time, to an internal model that represents, at any given 

point in time, the behavior of the target domain over a temporal interval. 

 

In Section Four I discuss spatial representation, and in particular Alaxandre Pouget’s basis 

function model of spatial representation (see e.g. Pouget et al. 2002). This is a specific 

proposal about the neural implementation of spatial representation, in particular of 

behavioral spatial representation.2 In brief, the model has it that the locations of objects are 

represented as a set of basis function values of the sensory and postural signals involved in 

the perceptual episode.  

 

In Section Five I describe how to combine the basis function model of spatial representation 

with the trajectory emulation model of temporal representation to yield an information 

processing framework that genuinely represents behavioral spatiotemporal trajectories of 

behavioral objects. Section Six concludes. 

 

 

2. Emulation theory 

 

In this section I will introduce a theory of the information processing structure that the brain 

employs in order to construct and use representations of entities external to the brain, 

especially the body and the environment. This introduction will be quite brief, and will  

include neither much of the supporting evidence to the effect that this is in fact the 

                                         
2 Though on my preferred use of the expression ‘representation’ the basis function model by 
itself is not a theory of representation at all, but a theory of the information processing that 
extracts spatial information from various signals. It becomes representational, on my account, 
when operating within the superstructure of the emulation theory, as Section 5 will detail. 
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information processing structure that the brain uses, nor many of the applications of the 

theory that supply tremendous explanatory leverage in the attempt to understand the 

brain’s operation. Much of this omitted material can be found in Grush (2004). Readers 

familiar with the emulation theory can safely skip sections 2.1 and 2.3, though I would still 

recommend section 2.2. If I am right, the brain has and uses many emulators, and I will 

describe a number of them. There are emulators of the body that are used for various 

motor control purposes and to produce motor imagery; emulators of the visual scene that 

produce anticipations of what will be seen, and can be used to produce visual imagery; 

amodal emulators of the environment that maintain representations of what is happening in 

the immediate vicinity.  Many of these can be run in parallel, and in fact as we shall see, the 

operation of an emulator of the body and of the sensory modalities being run in parallel is 

arguably a big part of the explanation of our ability to represent egocentric space in an 

amodal way.   

 

I should point out that in claiming that this is a way to understand representation, I am 

simultaneously trying to explain a phenomenon and define my use of terms. Other people 

may have some idea of what representations are that does not jibe with what I am about to 

say. That is fine. I am not interested in fighting over who gets to use the word 

‘representation’ but rather in understanding a certain kind of phenomenon – the capacity of 

a sophisticated system to construct and maintain ‘internal’ states that track the behavior of 

other entities in order to assist it in its interactions with these other entities. It seems to me 

that the word ‘representation’ and its cognates are a natural fit for this phenomenon, and if 

one wants to couch the issue in terms of providing an account of what representation is, or 

something like that, then what I am about to do, and the ‘representation’ terminology I use 

in doing it, strikes me as reasonable and natural. But anyone who has their own axe to 

grind about the word ‘representation’ is invited to provide their own terminology for what I 

am about to describe. 
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2.1 Control, filtering, and emulation basics 

 

The most basic division in control theory is between the thing doing the controlling, and the 

thing being controlled. I will typically call the first the controller, and the latter the process.3 

And there are two basic kinds of classical control architectures that describe how the 

controller influences the process: open-loop (aka feed-forward) and closed-loop (aka 

feedback) control. These are shown in Figure 1: 

 

 

 

 

 

Figure 1. Open-loop and closed-loop control. 

 

The controller is provided with some goal state — the state that the process should be in. 

This goal is most often specified in terms of some measured state or states of the process. 

For example, a thermostat is given as its goal a temperature for the room or building, and 

this is measured by a sensor – a thermometer – that is sensitive to that state of the 

                                         
3 'Controller' is fairly standard terminology for the thing issuing commands. The controlled 
system is often called the 'plant' in the literature, but 'process' is also used, especially in signal 
processing contexts. 
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process. An autopilot controls an aircraft, and its goals are in terms of an altitude, heading, 

speed — all of which are measured by various instruments on the aircraft. There are of 

course many states of the room or aircraft that are not measured, and some of these may 

be important for the operation of the process. The mass of the aircraft is not measured, nor 

is the force applied to the wing by the engine. Measured states will be called sensor signals, 

since they are typically produced by sensors that monitor or measure some state(s) of the 

process. The goal state then is a target sensor signal, which I shall call sG.4 

 

The controller's job is to produce a control signal, or sequence of control signals, that will, 

when issued to the process, cause the process to go into the goal state (as determined by 

the measured sensor signals). The controller can thus be described as a function that maps 

a specification of the sensory goal into control signals. The process is some system such 

that its state at any given time t is a function of (at least) two factors: its state at the 

previous time t-1, and the current control signal c(t). If we let V stand for the function that 

determines how the state of the process would evolve over time in absence of any external 

influence, we have: p(t) = Vp(t-1) + c(t). 

 

The measurement is just some mechanism that measures one or more states of the process 

in order to produce a sensor signal. If we use the label s(t) for the sensor signal that is 

produced at any given time t, we have: s(t) = Op(t), where O is the measurement function. 

Notice that the sensory goal sG does not change over time, like the sensory state s(t) and 

process state p(t) do. 

                                         
4 In some cases my notation and terminology will differ slightly from the standard notation 
and terminology used in control theory or signal processing. These divergences aren’t too 
frequent, and when they occur the reason will typically be that slightly non-standard 
terminology will make my overall goal of putting these tools to use in understanding neural 
information processing easier and more perspicuous. The vast bulk of my terminology and 
notation is entirely standard. Apologies to those readers who are surprised by the 2 or 3 
deviations in notation, but such a reader should have no problem knowing what I am talking 
about: for example, that what I have called sG is standardly called a setpoint or reference 
signal. 
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An open-loop controller is one that determines the control signals without benefit of 

information about the state of the process as the control episode unfolds. A closed-loop 

controller is one that has the benefit of a continual stream of feedback from the process (in 

the form of the sensor signal) to help determine the control signals. A thermostat is the 

standard example of a closed-loop controller. The process in this case is the room or 

building together with its heating system. The measurement is a measurement of one 

crucial state of the process, its temperature. The goal state is a goal temperature for the 

room or building, and this is often input to the controller by moving a lever along a 

calibrated set of marks. The controller compares the goal temperature with the actual 

temperature — which it has access to via a measurement of the process. In the simplest 

case this measurement is implemented by the angle of a bi-metallic strip. Based on this 

comparison, the controller either turns (or keeps) the heater on, or turns (or keeps) the 

heater off. The result of the controller's operation is that it produces a sequence of signals, 

typically in the form of electrical signals sent to the heating system, whose effect is to get 

the process to the goal state (as determined by the sensor signal). 

 

An example of an open loop controller is an old-fashioned toaster. The process is the 

heating elements and bread. The controller is simply a timer that keeps the heating 

elements on for some period of time (this is as least one way toasters have been 

implemented, there are others). As with the thermostat, one sets the goal state by moving 

a lever along a calibrated scale, typically ranging from 'light' to 'dark'. On the basis of this 

input, the controller produces a control sequence and issues it to the process, in the form of 

keeping a circuit that powers the heating elements closed for some period of time. Unlike 

the thermostat, the controller gets no feedback concerning how the process develops during 

the control episode. The control sequence is determined on the exclusive basis of the input 

of the desired goal state. If everything works well, when this control signal is acted on by 
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the process, the effect is that the bread is toasted to the degree specified by the desired 

goal that was input. 

 

My purpose in discussing control theory is not to discuss thermostats or toasters. It is to 

understand the operation of the brain. In the case of motor control (the most obvious 

application of control theory in the brain), much of the debate on this topic in the 20th 

century was a debate between proponents of closed-loop and those of open-loop control as 

a model for human motor control. In the closed-loop camp (which was heavily influenced by 

the cyberneticist, themselves largely closed-loop control endorsers whether they used that 

terminology or not) the motor control centers know the current state of the body and the 

goal state, and issue commands that will reduce the distance between the two until the 

difference is zero. This is standard closed-loop thinking.  

 

The open-loop proponents, driven by data that suggested that the initial stages of a given 

movement appear to be the same whether or not the feedback signal is tampered with, held 

that the initial stages of a movement are open-loop — a motor volley determined and 

executed without employing any feedback. One standard way to tamper with the feedback 

signal is tendon vibration. The two main mechanisms by which the nervous system gets 

information about the position of the body are stretch receptors, which are responsive to 

muscle length, and Golgi tendon organs, which are sensitive to tendon tension. Appropriate 

vibration at muscle/tendon interface can stimulate stretch receptors, fouling the feedback 

they provide. The finding is that this interference appears to make a difference to the motor 

control episode only towards the very end of the movement, earlier stages being largely 

unaffected. This leads these researchers to suggest that motor control is closed-loop only at 

the very end of the movement (grasping and pointing are typical examples) when fine 

adjustments are needed. For more on this debate, see Desmurget and Grafton (2000). 
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Closed-loop and open-loop control, though the most well-known kinds of control scheme, do 

not exhaust the possibilities. In this subsection and the next I will discuss a few additional 

schemes, all of which make use of a construct that has not yet been introduced, the forward 

model (which I will also call an emulator). The simplest scheme to use a forward model is 

pseudo-closed loop control, which is shown in Figure 2. In this scheme we have a controller 

and a process, as in the closed- and open-loop schemes. In addition there is an entity that 

implements the same, or close to the same, input-output mapping as the process. It is a 

model of the forward mapping. 

 

 

 

Figure 2. Pseudo-closed loop control.  

 

In this scheme, the control signal c(t) is split into two copies, one of which goes to the 

process as in closed- and open-loop schemes. The other copy is sent to the emulator (which 

here is a model of the process plus a model of the measurement). The process model 

models the states of the process, and also models the way that those states evolve over 
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time. While the real process has a state p(t) at any given time, the model has an estimate 

of that state,   

! 

p (t). Just as the real process evolves over time as a function of its previous 

state p(t-1) and the control signal, so the process model’s state evolves over time as a 

function of its previous state   

! 

p (t-1) and the control signal. The process model is subjected 

to a measurement that produces a mock sensory signal   

! 

s (t). 

 

Since the emulator (process model + measurement) implements the same input-output 

mapping as the real process + measurement, and since it is being given the same input, it 

will produce the same output: that is   

! 

s (t) will be equal to s(t). Because the output is the 

same, the emulator’s feedback   

! 

s (t) can be provided to the controller in lieu of the feedback 

produced by the measurement of the process. (These are ideal conditions of course, and 

complexities such as noise and random disturbances will be introduced shortly.) 

 

There are many uses for process models, including helping the controller deal with delayed 

feedback from the real process; running the emulator only, with the process completely 

idle, in order to test out counterfactuals, to see what the process would do if certain control 

signals were issued to it; running the emulator and process in parallel and using the 

emulator’s feedback to fill in or correct faulty or noisy sensor information from the 

measurement of the process. This last use requires some more sophisticated mechanisms, 

to which I turn now. 

 

The Kalman filter (Kalman 1960; Kalman and Bucy 1961; henceforth KF) per se is, as the 

name implies, a method of filtering noise from a signal. As such it is not necessarily involved 

in control structures. I will first describe one standard version of the KF, and then explain 

how it can be integrated into a control structure. For convenience I will treat time as 

discrete, but extensions of KFs to continuous time are available, just more complicated. The 

top third of Figure 3 exhibits the problem that the KF solves. A process evolves over time, in 
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part as a function of its own inner dynamic, but possibly also under the influence of some 

external driving force, and perhaps even random disturbances.  

 

 

Figure 3. A Kalman filter. 

 

At each time t the process is measured to produce a signal I(t). But this measurement 

process is not perfect, and the imperfection can be represented as the addition of noise n(t) 

to I(t). The observed (noisy) signal is s(t) = I(t) + n(t). So we have made the process as 

described in the previous section more realistic by accommodating the possibility of 

unpredictable disturbances to the process’s state, as well as noise in the measurement of 

the process.  
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The KF’s job is to determine what the real signal I(t) is, or to put it another way, to filter the 

noise from the observed signal. (And if the measurement function O is invertible, then this 

is equivalent to knowing the process’s actual state.) The KF itself is diagrammed on the 

lower two-thirds of Figure 3. The KF has knowledge of the function V that governs the 

evolution of the process, as well as the measurement function that produces signals based 

on the process’s state. It also knows, at each time step, what the observed signal is, and 

what the driving force, if any, is. What it does not know is the state of the process, nor the 

process noise, nor the sensor noise.  

 

This description may sound like it applies only to artificial situations, but in fact this is 

characteristic of many real world situations, such as ship navigation. The navigation team 

knows the driving force, if any (we can suppose that they simply listen in as the captain is 

giving orders), and they know the observed signals – the noisy measurements provided by 

the bearing takers, etc. And they have knowledge of how a ship’s state evolves over time. 

For example, they know basic stuff such as: if a ship is at location X and is going at speed S 

and direction D, then at the next time it will be at Y. The team also knows how the 

measurement process works, in that they know how to translate from ship state to bearing 

measurements and vice versa (this is just basic trigonometry). They do not know how 

inaccurate the bearing measurements are (sensor noise); nor do they know the process 

disturbance – unknown winds and ocean currents, for example. And the navigation team’s 

job is to determine the ship’s actual state, which, given the capacity to translate between 

process state and measurements, is equivalent to determining what perfectly accurate 

noise-free measurement would be. 

 

There are many situations other than ship navigation that fit this general structure as well. 

A relevant example is the brain, which tries to keep an accurate estimate of the body’s 
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state. It has knowledge of motor commands that it has sent (it knows the driving force); it 

has a bunch of sensor information that is noisy and imperfect in various ways; it has, 

through experience, knowledge of how the body’s state generally evolves over time; and on 

the basis of these sources of information it tries to determine what is really going on with 

the body. 

 

Back to an explanation of the KF. The main trick of the KF is that it uses its various sources 

of information to maintain an optimal estimate of the state of the process. It then subjects 

this process state estimate to a measurement that is just like the real measurement of the 

real process that produces the real noise-free signal. The result is an optimal estimate of 

the real noise-free signal. So the question now is: how does the KF get and maintain an 

optimal estimate of the state of the process? 

 

The KF begins each cycle with the state estimate it produced at the previous cycle. After I 

have explained the KF’s operation I will return to the question of how the KF first gets a 

workable estimate without any previous estimate. This turns out to be relatively trivial. For 

now, though, it will be easiest to assume that it has a decent estimate from the previous 

cycle to begin with. The first thing the KF does is to produce an a priori estimate of what the 

current process state should be:   

! 

p (t). This estimate is a priori in that it has not yet taken 

into account any of the information from the observed signal. The KF arrives at   

! 

p (t) by 

taking its previous state estimate and the current driving force and applying its knowledge 

of how the process’s state evolves over time, V. So for example the navigation team can 

take its estimate of the ship’s state at the previous fix cycle, together with the commands 

that have been issued by the captain concerning engine speed and rudder angle, to produce 

an a priori estimate as to what the ship’s current state ought to be. This cycle of the KF’s 

operation is sometimes called the time update. 
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The second cycle, sometimes called the measurement update, of operation is where the KF 

adjusts its a priori estimate on the basis of the observed signal. The result of this 

adjustment is the a posteriori estimate,   

! 

ˆ p (t), and this is the KF’s final estimate of the state 

of the process at that time. This cycle unfolds as follows. First, the a priori state estimate 

  

! 

p (t) is measured to produce an a priori estimate of the real signal   

! 

I (t). (I will consistently 

use a straight bar over a variable in order to indicate an a priori estimate of that variable’s 

value.5) This is what the KF expects the observed signal to be, given its a priori state 

estimate and current driving force. This is compared to the actual observed signal s(t). The 

difference is the mismatch between what the KF expected to see, given its a priori estimate, 

and what it actually saw from the observed signal. By pushing this difference through an 

inverse of the measurement function6, the KF arrives at a measure of the difference 

between its own a priori estimate of the process’s state, and what the process’s state would 

have to be if the observed signal were accurate. This is called the sensory residual. 

 

The tricky part is that the sensor signal is not perfect. There is noise, and in the navigation 

example this is a reflection of the fact that the people taking the bearings are not 

completely accurate. Because of this, one cannot assume that the existence of a non-zero 

sensory residual means that the a priori estimate was inaccurate. Even if the a priori 

estimate is entirely accurate, the existence of sensor noise will create a sensory residual.  

 

                                         
5 A straight bar was also used in the previous section in notation for the states of the process 
model in pseudo-closed loop control. By the end of this section it should be clear why this is 
appropriate: a pseudo-closed loop system does not provide for any influence from the real 
sensor signal to the process model, and so the process model is restricted to working with a 
priori estimates. 
6 This is called a measurement inverse because it is the inverse of the measurement function. The 
measurement is a function that maps process states to sensor signals. For example, the people who 
take bearings on a ship are implementing a measurement. They produce signals, in this case bearings 
to known landmarks, on the basis of the process’s state, in this case the location of the ship. The set 
of numbers produced by the bearing takers depends on the location of the ship. The inverse of this is 
a mapping from sensor signals to process states. When the navigation team is given a set of numbers 
from the bearing takers, they implement an inverse by determining where the ship would have to be if 
the sensor signals they have just received are accurate. 
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Before explaining how the KF arrives at its a posteriori estimate, it is worth exploring the 

way that the a priori estimates   

! 

p (t) and   

! 

I (t) and the observed signal s(t) differ with 

respect to how they handle the two kinds of unpredictability inherent in the process and 

measurement. These two sources of unpredictability are the process disturbance 

(unpredictable disturbances to the process’s state during the last time step) and the sensor 

noise (imperfections in the signal produced). The a priori estimates are not affected by 

sensor noise, for the simple reason that they do not make any use of the observed signal. 

The weakness of the a priori estimates is process disturbance. If there were no process 

disturbance, then the a priori estimates would be entirely accurate (given of course that the 

estimate available from the previous time was accurate). But because of unpredictable 

changes to the state of the process, the a priori estimates will not be entirely accurate even 

if the previous state estimate was. The sensor signal is exactly the opposite. It is unaffected 

by process disturbance, for the simple reason that it is a measurement of the current actual 

state of the process. This measurement does not depend on how the process got to the 

state it is in.  

 

These observations on the complementary strengths and weaknesses of the a priori 

estimate and the measured process state provide the rationale behind the way in which the 

KF produces its a posteriori estimate. If the magnitude of the process disturbance is large 

compared to the magnitude of the sensor noise, then the KF will weight the observed signal 

more heavily than the a priori estimate when combining the two. In the navigation case, 

this would be a situation in which we know that there are strong unpredictable currents (we 

know we are in the middle of a storm, for example), but the people taking the bearing 

measurements are very accurate and reliable. In such a situation, if your prediction based 

on the last location of the ship was in significant conflict with what the people taking the 

bearings are telling you, you go with what the reliable bearing takers say, and credit the 

disparity between what you predicted and what you observed to process disturbance that 
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moved your ship off course. If, on the other hand, there is very little process disturbance 

(the seas and winds are calm), but the measurement process is very noisy – perhaps the 

bearing takers are drunk – then you will weight your prediction based on the last estimate 

more heavily, and credit any major difference to noise in the observed signal. 

 

The relative magnitude of the process disturbance and the sensor noise determines a factor, 

called the Kalman gain, that the KF uses when combining the a priori estimate and the 

measures process state. It is, roughly, a fraction that determines the relative weight given 

to each when they are combined to form the a posteriori estimate. Given the structure of 

the problem faced by the KF and the way in which this gain is determined, this estimate 

represents the optimal estimate, in the sense that there is no better estimate that could be 

produced given the information that the KF has access to. The KF then subjects this a 

posteriori process state estimate   

! 

ˆ p (t) to a measurement, and the result is the KF’s a 

posteriori estimate of what the real, noise-free signal is:   

! 

ˆ 
I (t). The a posteriori estimate 

then forms the starting point for the a priori estimate of the next cycle, and the cycle 

repeats. 

 

It is a trivial matter to integrate the KF into a control scheme. This is shown in Figure 4. 
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Figure 4. A control scheme that uses a Kalman filter. 

 

The control architecture diagrammed in Figure 4 has the various control structures 

discussed in the previous sections as special cases. An open-loop control scheme results if 

the mechanisms shown in the bottom two-thirds are ignored. A closed-loop system results if 

the Kalman gain is set so as to always use the entire residual correction. This is because if 

the entire residual correction is used, then the a posteriori estimate will always be 

equivalent to the observed signal, and hence the signal sent back to the controller will 

always be equivalent to the signal produced by the actual measurement of the process, just 

as in closed-loop control. Finally, if the Kalman gain is set to ignore the sensory residual 

altogether, then the scheme becomes equivalent to pseudo-closed loop control. If the 

sensory residual is ignored, then a ‘a posteriori’ estimate is always equivalent to the a priori 
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estimate, and in this case the process model will simply evolve over time as a result of its 

own inner dynamic and the efference copies. But perhaps the most perspicuous way to 

understand the scheme is as a closed-loop control system that uses a Kalman filter to filter 

noise from the feedback signal. 

 

I have used the KF as an example, mostly because the KF is mathematically well defined, 

and by using an example that is so well defined, a number of distinctions can be made more 

efficiently than they could have been with a more qualitative example on hand. But the 

emulation theory is not identical to Kalman filtering. The KF is one example of the emulation 

framework, but not the only example. The emulation framework is an information 

processing strategy according to which a system maintains a model of some other system, 

and uses this model in various ways: it can operate on the model independently of the 

modeled system in order to get an idea of how the modeled system would behave in various 

circumstances; it can operate the model in parallel to the modeled system to overcome 

problems with sensory access to the modeled system, such as feedback delays, noisy 

sensors, etc. The KF is relatively restricted: it does not run the model off-line, and when run 

in parallel with the process it does not use the model in such a way as to deal with feedback 

delays (the KF is set up to solve a problem other than feedback delays), and it combines the 

sensory information and the model’s state in very specific ways. The emulation framework 

drops these restrictions. An emulator-employing system might use an emulator to help 

process sensor signals, but not strictly determine anything like a Kalman gain to optimally 

combine then, but use some other method, perhaps including just giving each equal weight. 

It might use the emulator completely off-line to produce imagery, or run thought 

experiments (more on this below). 
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2.2 Modal vs. amodal emulation 

 

In this section I will very briefly introduce a distinction between two kinds of emulation, 

what I will call modal and amodal emulation. This will be a very brief discussion, more detail 

on the difference between modal and amodal emulation can be found in Grush (2004). All of 

the emulators I have described so far have been models of the process. Additional 

components, specifically measurement functions, have been appended to the process and 

the process model to map states of the process or process model into signals in sensory 

format. These are all examples of what I will call amodal emulation. The emulator itself, the 

process model, is not tied to any sensory modality. Rather, the sensors are distinct 

mechanisms, and the ‘modality’ would be the way the process (or process model) is 

measured. The following analogy should help make this clear. Your environment – the 

spatial vicinity around you and the objects in it – is not intrinsically visual or auditory or 

gustatory. The environment itself is amodal. Your body has various sensory modalities that 

can measure the environment in different ways. Visual sensors produce signals that give 

information about some of the states of the environment, but are insensitive to others. 

Auditory sensors produce signals that pick up on features that vision is deaf to, but audition 

is itself blind to many features vision picks up on. And so forth for other modalities. 

 

The situation is similar for emulators. A model of the process can be subjected to various 

measurements: measurements that produce estimates of what the visual signal will be; 

measurements that produce estimates of what the auditory signal will be; and so forth. 

(One might take a navigator’s ship model and ‘measure’ its location, but not direction or 

speed; or one might measure its heading, but not location.) But another kind of emulator is 

possible – modality-specific emulators. This can be illustrated with an example, Bartlett 

Mel’s Murphy. (Mel, 1986). Murphy consists of a system that controls a robotic arm, its task 

being to move its arm around obstacles in a workspace and grasp targets. The arm’s 
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movement is confined to a plane. Murphy observes the workspace and its arm’s motion via 

a video camera above the workspace. This camera drives a 64x64 grid of pixels that 

function as a low-resolution image, which is Murphy’s sole access to what is happening in 

the workspace. As Murphy issues commands to its arm, in the form of changes to its 

shoulder, elbow and wrist angles, it sees the results of its commands on the grid. 

 

Murphy, however, implements a modal emulator of its environment. The units on the 64x64 

grid are actually connectionist units that learn to predict what the results of given motor 

commands will be on the next workspace image. For example, if the pattern of activation on 

the grid is G1, and Murphy issues motor command M1, and this results in the pattern of 

activation on the grid changing to G2, the units learns that in the future if the grid is 

displaying G1, and M1 is issued, the next image on the grid will be G2. Once the grid has 

observed and learned from a sufficiently large sample of Murphy’s overt operation, Murphy 

can take its arm and workspace off-line, and operate only with the visual grid in emulation 

mode. Starting with an image of an initial arm and workspace configuration, Murphy issues 

motor commands that are suppressed from affecting the real arm (this is what it means to 

take the arm off-line), but are nevertheless processed by the visual grid such that the grid 

changes its state into an estimate of what the visual grid state would be if the arm  were 

still online. Murphy is thus producing visual imagery by driving its visual grid with efference 

copies. Once Murphy has discovered a way to move its imagined arm around the imagined 

obstacles to grasp the imagined target, it puts its arm back online and implements the 

solution it found. 

 

The sort of emulation that Murphy implements can be diagrammed in Figure 6. 
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Figure 6. A modality-specific emulator. 

 

Here, the emulator is not a model of the process per se, but a modality-specific emulator of 

the system consisting of the process and a specific modality of measurement. Because of 

this, the emulator’s output is not subjected to a measurement. Its output is already, by 

definition, in the format of the relevant sensory system. In Murphy’s case this was visual. 

 

We can easily imagine systems that combine modal and amodal emulation. Such a system 

is shown in Figure 7. Here, the same efference copies drive an amodal process model as 

well as a modality specific emulator. Both can be used to produce a priori estimates: one an 
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estimate of what the state of the process will be, the other a modal estimate of what the 

sensory signal will be.  

 

 

 

Figure 7. A system that combines modal and amodal emulation. 

 

The system described in Figure 7 employs two emulators: one an amodal process model, 

the other a modality specific emulator of the sensory systems. One copy of the command is 

provided to the amodal process model in order to produce an a priori estimate of the 

process’s state; another copy is processed by the modal emulator to produce an a priori 

estimate of the next sensory state.  
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When the amodal process model’s a priori state estimate is measured, another a priori 

estimate of the sensory state is produced. In Figure 7 the a priori estimate produced by the 

modal emulator is called  
  

! 

M

I (t), while the one produced by the measurement of the amodal 

process model is called 
  

! 

A

I (t). A sensory residual is now determined by comparing the two a 

priori estimates with the observed signal7. This residual can then be used to produce a 

posteriori estimates of both the modal and amodal estimates.  

 

Striking confirmation of the existence of a purely visual modality specific emulator comes 

from a phenomenon first hypothesized by von Helmholtz (1910), and discussed and verified 

experimentally by Ernst Mach (1896). Subjects whose eyes are prevented from moving and 

who are presented with a stimulus that would normally trigger a saccade (such as  a flash of 

light in the periphery of the visual field) report seeing the entire visual scene momentarily 

shift in the direction opposite of the stimulus. Such cases are very plausibly described as 

those in which the perceptual system is producing a prediction – an a priori estimate – of 

what the next visual scene will be on the basis of the current visual scene and the current 

motor command. Normally a motor command to move the eyes to the right will result in the 

image that is currently projected on the retina (and hence fed to downstream 

topographically organized visual areas of the brain) shifting to the left. And some region in 

the nervous system is apparently processing a copy of this driving force and producing an 

anticipation of such a shifted image – an anticipated image so strong that subjects actually 

report seeing it briefly. Normally such a prediction would provide to specific areas of the 

visual system a head start for processing incoming information by priming them for the 

                                         
7 Generalizing the process of arriving at a sensory residual from a case of one a priori estimate 
and one observed signal to perhaps more than one of each is straight forward. In the case 
where one wants to maintain the optimal estimation capability of the KF, one would of course 
combine them as a function of their respective error covariation. Where optimality is not a 
desideratum, much simpler procedures would suffice, such as averaging the a priori estimates 
and then subtracting the observed signal. 
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likely locations of edges, surfaces, etc. This a priori prediction would normally be largely 

confirmed, and seamlessly absorbed into ongoing perception as part of the a posteriori 

estimates. You don't normally notice these images, but there are ubiquitous. 

 

Just less than one hundred years after Mach published his experimental result, Duhamel, 

Colby and Goldberg (Duhamel et al. 1992) published findings that seem to point to the 

neural basis of this effect. They found neurons in the parietal cortex of the monkey that 

remap their retinal receptive fields in such a way as to anticipate immanent stimulation as a 

function of saccade efference copies.  

 

 

 

Figure 8. Anticipation of visual scene changes upon eye movement. See text for 
details. 

 

The situation is illustrated in Figure 8. Box A represents a situation in which the visual scene 

is centered on a small disk. The receptive field of a given PPC cell is shown in the empty 
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circle in the upper left quadrant. The receptive field is always locked to a given region of the 

visual space, in this case above and just to the left of the center. Since nothing is in this 

cell's receptive field, it is inactive. The arrow is the direction of a planned saccade, which will 

move the eye so that the square will be in the center of the visual field. There is a stimulus, 

marked by an asterisk, in the upper right hand quadrant. This stimulus is not currently in 

the receptive field of the PPC neuron in question, but it is located such that if the eye is 

moved so as to foveate the square, the stimulus will move into the cell's receptive field, as 

illustrated in Box B. The Duhamel et al. finding was that given a visual scene such as 

represented in Box A, if an eye movement that will result in a scene such as that in Box B is 

executed, the PPC neuron will begin firing shortly after the motor command to move the eye 

is issued, but before the eye has actually moved. The PPC neuron appears to be anticipating 

its future activity as a function of the current retinal projection and the just-issued motor 

command. The control condition is shown in Boxes C and D. In this case the same eye 

movement to the square will not bring a stimulus into the receptive field of the neuron, and 

in this case the neuron does not engage in any anticipatory activity. (Or, more accurately, it 

does engage in anticipatory activity, and what it is anticipating, correctly, is that nothing will 

be in its receptive field.) The control condition effectively rules out the hypothesis that the 

PPC cell is firing merely as a result of the motor command itself. It is only if the motor 

command will have a certain sensory effect that the PPC cell fires. This is a neural 

implementation of the construction of an a priori estimate. 

 

A full set of these neurons, covering the entire visual field, would explain the Helmholz 

phenomenon. And they would also constitute a modality specific emulator of the visual 

scene. 
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2.3 Application to motor control 

 

Motor control 

 

One of the challenges in our understanding of motor control is the fact that the temporal 

length of the control loop — how long it takes for a signal to travel along biological axons 

from the motor areas of the brain to the body and for peripheral signals carrying 

information about the results of the execution of that command and be processed so that 

they can beneficially influence the ongoing motor commands — is not short; on the order of 

250-400ms (Dennier van der Gon, J.J., 1988; Ito, 1984). This by itself is interesting, for it 

seems as though motor control is relatively good during such short bursts, such delays 

notwithstanding. These twin facts have been one of the reasons that people have been 

drawn to models of motor control that are open-loop (a closed-loop control scheme with 

significantly delayed feedback would face significant problems) except for the very end of 

the movement, where feedback is presumed to be used to make refinements (see 

Desmurget et al. 2000). Even more interesting, though, is the fact that it appears as though 

the motor centers make corrections to the motor plan as quickly as 70ms or so after 

movement onset, corrections that appear to be made on the basis of peripheral information 

(van der Meulen et al., 1990). Thus it appears to be the case that the motor centers are 

getting and acting on peripheral feedback before peripheral feedback should be available! 

 

In view of these facts and others, a growing number of motor control researchers are 

developing models of motor control that exploit forward models and (in some cases) Kalman 

filters (e.g. Blakemore et al. 1998; Kawato 1999; Wolpert et al. 2001; Krakauer et al., 

1999; Houk et al., 1990; for a very recent neurobiological vindication of forward models in 

motor control, see Mehta and Schaal, 2002). The main idea is that emulators of the body 

(specifically the musculoskeletal system and its dynamics) can process efferent copies and 
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provide predictions of what the peripheral signal will be before the real peripheral signal is 

available (this was Ito’s (1970, 1984) initial motivation for speculating on the existence of 

emulators in the cerebellum). A particularly clear example is Wolpert, Ghahramani and 

Jordan (1995). These authors developed a model of the information processing structure of 

human motor performance with the aim of explaining the temporal patterns of errors and 

corrections in various movement conditions, one particular aspect being the potentially 

disruptive effects of feedback delays in fast real-time movement. The authors develop a 

model that is essentially of the form in Figure 4, and show how patterns of movement errors 

under varying conditions can be explained on the assumption that during the initial phases 

of a movement, before proprioceptive feedback is available, the motor centers exploit 

feedback from an internal model of the musculo-skeletal system (a priori predictions), while 

as time progresses, feedback from the periphery is incorporated into the estimate (a 

posteriori estimates). 

 

 

Motor imagery/motor planning 

 

The previous subsection focused on the use of emulation during motor control — when the 

emulator is run in parallel with the real musculo-skeletal system so that its timely feedback 

could stand in for the delayed feedback from the periphery. Now we turn to off-line uses. 

There has been a growing interest in the so-called ‘simulation’ theory of motor imagery 

(Johnson 2000; Jeanerrod 2001). According to this theory, motor imagery — the imagined 

proprioceptive feelings of movement and force — are the result of the off-line operation of 

the motor areas of the brain. This is entirely in line with the emulation theory, which holds 
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that faux proprioception is the result of running the musculo-skeletal emulator off-line, and 

the motor centers are what drive the emulator.8   

 

The benefits of such off-line operations are many, but I will  mention only one here, motor 

planning. All movement tasks admit of an infinite number of solutions, some better than 

others. Depending on how your body is configured, and how your backpack is resting on the 

floor, and what you will be doing after you pick it up (opening it to look in it, grabbing it and 

walking away), taking an overhand or underhand grip on the strap might be better. We 

often choose the best grip quickly and without any conscious effort or awareness, but the 

motor systems are hard at work during the fractions of a second before the event. There is 

evidence (see Johnson 2000 and references therein) to the effect that this motor planning 

involves covert motor imagery produced in order to determine which of a small number of 

options will work best. 

 

 

3 Trajectory emulation 

 

3.1 Temporal generalization of the emulation theory 

 

The KF is temporally degenerate in two senses. First, it produces state estimates of only one 

time at a time. Second, these two times are always the same: for all times ti, the state 

estimate that the KF produces at ti is an estimate of the state of the process at ti. This last 

claim might seem surprising at first, since doesn’t the KF produce a prediction when it 

produces its a priori estimate? No. At least not in the relevant sense. At the beginning of 

                                         
8 In Grush (2004) I discuss the simulation theory in more detail, and point out differences 
between the simulation theory and the emulation theory, as well as considerations that favor 
the emulation theory. 
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each operational cycle, the KF produces an a priori estimate of the process’s state. This 

estimate is a prediction in the sense that, once measured, it provides a prediction of what 

the observed signal is, and this ‘prediction’ is compared with the observed signal to produce 

the sensory residual. But it is not a prediction in the sense that it is looking ahead in time. 

The a priori state estimate is an estimate of the state of the process as it currently is. It is a 

prediction in the sense that I might draw a card from a deck and ask you to predict what 

you will see when I turn it around. The card is already drawn when you produce your guess, 

so you aren’t predicting what card I will draw. You are predicting what you will see when I 

turn the card around. It is only this sense in which the a priori estimate is a prediction. 

 

The first generalization I will undertake in this section takes us away from the KF’s 

ubiquitous focus on the co-temporaneous process state. The mechanisms already in place in 

the KF can easily produce a priori estimates of what are genuinely future states of the 

process. At time t, the KF can produce (as we have seen) an a priori estimate of the state of 

the process at t, by taking its previous a posteriori estimate together with any current 

driving force signal and updating it via the function V. Normally this estimate then gets 

measured and compared with the observed signal to produce the a posteriori estimate. But 

there are other options. The system might simply do another iteration of the time-update. 

That is, it can take   

! 

p (t), together with any driving force that will be executed at time t+1, 

and use that as input to V again to produce an a priori estimate of the process’s state at 

t+1:   

! 

p (t+1). These iterations can continue indefinitely far into the future. The system can, 

at t, produce estimates of what the process’s state will be at any arbitrary future time step 

by simply iterating the time-update as many times as it takes.  

 

There are obvious limitations. Depending on the magnitude of the process disturbance, 

these state predictions may fail to be reliably close to the real future state of the process 

beyond some number of iterations. Similar limitations arise if the driving force that is 
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predicted to apply during future time steps is not perfectly predicted. But these limitations 

aside, the point is merely that such predictions can be produced by mechanisms already at 

hand. This production of estimates for genuinely future states of the process is prediction.  

 

A similar but not entirely parallel process concerns the production of estimates of past state 

of the process. There are several ways that a system that has the tools of the KF could 

produce such past state estimates. First and easiest, it could simply remember the 

estimates that it actually produced at those previous times. Second, it could produce state 

estimates of previous states by taking its current state estimate and pushing it through an 

inverse of the time-update function. Just as one can produce a future estimate by 

employing the time update function V as in:   

! 

p (t+1) = V  

! 

p (t), one can produce a previous 

estimate from a current one via   

! 

p (t-1) = V-1
  

! 

p (t). Of course, one would get a better 

estimate of the state at t-1 if one used as input the a posteriori estimate at t:  

  

! 

p (t-1) = V-1
  

! 

ˆ p (t). And this process can also be iterated to produce estimates of states 

arbitrarily far in the past. (E.g., if the ship is now at location X, and its speed is S and 

heading is H, then it was probably at Y at the last fix cycle.) 

 

While either of these will produce an estimate of the state of the process at some previous 

time, each has a shortcoming.9 A third method, smoothing, effectively combines the two. At 

time t, a smoothed estimate of the state at time t-1 is arrived at by combining the a 

posteriori estimate of the processes state at t-1 that was actually produced at t-1 (this is 

the first method above), with a state estimate arrived at by backtracking one time step 

                                         
9 I’ve decided to unburden the main text of an explanation of these shortcomings. But for 
those who are interested the following remarks and reference should suffice. Neither of the 
two methods described above makes use of all the available data. A previous remembered 
estimate does not take into account observations made after that estimate, and these 
observations may be crucial. Estimates of past states made by back iterating a future estimate 
through an inverse of the time update tell us what the most likely past state is given only the 
current state. But the most likely past state given only the current state might differ from 
what is the most likely past state given both the current state and the past observations. Each 
of these methods ignore some chunk of the observed signal. See Bryson and Ho (1975). 
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from the a posteriori state estimate of the process at t that was produced at t (this is the 

second method above): 

 

(1)   

! 

˜ p (t-1) =   

! 

ˆ p (t-1) + KS(V
-1
  

! 

ˆ p (t)) 

 

Here,   

! 

˜ p (t-1) is the smoothed estimate of the process’s state at t-1; KS is a factor analogous 

to the Kalman gain that determines the relative weight given to the a posteriori estimate 

from t-1 and the backtracked a posteriori estimate from t. 

 

With the addition of smoothing and prediction we have generalized away from the KF’s 

myopic focus on the now, to a system capable of generating state estimates of the process 

as it was in the past or will be in the future. Next we must generalize from the focus on 

estimates of the process’s state at a single time (whether past, present or future) to 

estimates of the process’s trajectory over a temporal interval. The basics of this are easy 

enough to do. We can describe a system that maintains estimates of the states of the 

process throughout an interval from t-l to t+k. Of course, if l=k=0, then we have the 

degenerate case of an estimate of an interval that consists of only one time, t. I am 

interested in cases where l and k are both greater than 0: 

 

(2) (pt-l, pt-l+1, …, pt, … pt+k-1, pt+k) 

 

To make the notation a bit more elegant, I will  use   

! 

˜ p [b,c]/a to be the estimate of the 

trajectory of p over the interval from time b to time c, produced at time a. Hence the 

estimate in (2) would be   

! 

˜ p [t-l,t+k]/t. I will call a system that constructs and maintains 

estimates of the trajectory of the process over a temporal interval a trajectory emulator. 
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3.2 Psychological phenomena 

 

The overall idea that the brain employs a trajectory emulator that maintains a trajectory 

estimate over an interval can be illustrated with a number of phenomena. First consider 

apparent motion. Two successive flashing dots presented within some spatial distance and 

within some inter-stimulus interval will appear to be a single moving dot, moving from the 

location of the one that flashes first to the location of the one that flashes second (see 

Figure 9). This can look to be merely a spatial illusion, in that it looks as though a dot has 

moved through spatial areas where no dot has in fact been. For example, it appears as 

though the dot occupied and moved through location B as indicated on the right hand side 

of Figure 9. To bring out the temporality of the phenomenon, consider that the subject will 

appear to see the dot first at the location A, then location B, and then finally at the location 

C – the motion is actually perceived to be continuous, but I am just drawing attention to the 

temporal relations between three of the posits on the continuous path.  

 

 

   

Figure 9. Apparent Motion. The left hand side represents actual stimuli, a flashing 
dot (1) followed by a second flashing dot (2). The right hand side represents what is 
perceived: a single dot moving from location A (the location of the first dot’s flash), 
through location B and to location C (the location of the second dot’s flash). 

 

Notice, however, that if the second flashing dot were above, or below, or to the left of the 

first, then the subject would have seen the dot as moving upward, or leftward, or 

downward. And accordingly, the intermediate location B would be either above, to the left 
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of, or below, location A. But – and this is the crucial bit – until the second dot actually 

flashes, the subject cannot know in which of these four spatial regions the interpolated 

motion (the location of B) should occur. Yet the subject sees the dot as being at the 

interpolated location before being at the terminal location where the second flash occurs. It 

can seem as though the perceptual system is able to foretell where the second flash will be 

in order to appropriately begin filling in the intermediary phases of the apparent motion. 

 

The trajectory estimation model explains this without recourse to the supernatural. At the 

time of the first flash, the estimate is that there was a single flash at time t. If nothing else 

happens, then as time progresses this estimate will not change. At t+1, and t+2, and so on, 

the estimate will continue to be that there was a flash at t. Suppose, however, that at t+2 a 

second flash occurs at location C. The visual system has models of what happens in the 

environment, and the relative likelihood of various events, according to which two discrete 

sensed flashes at A and C at times t and t+2 respectively is, if the temporal and spatial 

magnitudes are small enough, more likely an imperfectly (noisily) sensed continuous 

stimulus traversing the path from A to C, than a perfectly sensed pair of distinct stimuli in 

close spatial and temporal proximity. So at t+2, the trajectory estimate is revised to 

represent a stimulus as having been at location B at t+1. 

 

Another fascinating phenomenon that is potentially explained by the mechanisms introduced 

so far is representational momentum. The basic phenomenon is this: subjects are shown a 

movie or sequence of images that shows some sort of movement, such as a rotating 

rectangle or moving ball. The scene stops, and subjects are probed to determine their 

assessment of the final state of the motion they saw. The result is that subjects judge that 

the motion or rotation continued farther than it in fact did. Not surprisingly, the 

phenomenon does require that the motion is predictable (Kerzel 2002). 

 



Grush Space, time and objects  p34/34 

 

The trajectory emulation framework explains this phenomenon easily. Even though there is 

only a sensory signal corresponding to the motion up to time t, the prediction end of the 

trajectory emulator produces predictions of the future state of the process. These 

predictions will be possible because the emulator has knowledge of the way the process 

typically behaves. Senior et al. (2002) describe the situation this way: 

 
Representational momentum is thought to occur due to the encoding of specific 
contexts and semantics inherent within the stimuli (e.g., the encoding of the effects 
of gravity in a picture of a man jumping from a ledge). These contexts are encoded 
on the basis of prior knowledge of how complex objects behave in the real world. 
(Senior et al. 2002) 

 

When the subject is probed to determine the extent of their representation of the object’s 

motion, this probe is picking up on representations that were constructed as predictions at 

the leading edge of the moving window.  

 

 

4. Spatial information processing and basis functions 

 

We have to switch gears now, from one kind of information processing structure to another 

– from time to space. The question how the brain represents space is not as straight-

forward as one might have thought. Surprisingly, even though the brain makes use of a 

great many topographic maps – maps of the body surface and of the retinae, to name just 

two of dozens – it does not appear to represent egocentric space by means of anything like 

a map. The parietal cortex is certainly the most important cortical area for representing 

egocentric space. Lesions to this area result in characteristic spatial deficits, both perceptual 

and behavioral. But single cell recordings have failed to even hint at anything resembling 

such a map in the parietal lobes. What has been found by single cell recordings are cells 
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that are responsive to a number of sensory and postural signals. Understanding what these 

have to do with spatial representation requires the right theory, to which I turn. 

 

Perhaps the major key to understanding the operation of PPC neurons and hence the PPC as 

a whole was a connectionist simulation by Zipser and Andersen (1988), a model that is also 

one of the most prominent triumphs of connectionist computational neuroscience. Zipser 

and Anderson constructed an idealized version of the problem confronted by the PPC. A 

system with a one rotatable eye was to determine the direction (in head-centered 

coordinates) of a stimulus projected onto its retina – in other words, determine the direction 

of an external stimulus given only information about stimulation on sensory receptors and 

postural information. The system in question was a connectionist network trained by back-

propagation (see Zipser and Andersen (1988) for details). During training the network was 

given an input vector that contained information about where on the retina a stimulus was 

projecting, and how the eye was oriented. The output vector was a specification of the 

direction of the stimulus in head-centered coordinates. During training the network was 

provided with training sets consisting of correct input-output pairs, and it was trained to 

learn to match them. Subsequent testing on novel inputs revealed that it could produce 

correct outputs. 

 

Because this was an artificial network, it was possible to subject the units to any kind of 

analysis one might want, unlike real neurons that are difficult to study. The key as always is 

the hidden units of the network – the processing elements that lie between the inputs and 

outputs, the details of whose operation is forged during the training period in such a way as 

to produce the correct output vector (in the output units) upon receipt of an input vector 

(from the input units). The result of this analysis was that each of the hidden units was 

acting as a linear gain field combining both sensory and postural information, which in this 

case were the location of retinal projection and eye’s orientation respectively. And in 
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particular, each hidden unit's activity was the product of (i) a Gaussian function of the 

stimulus's distance on the retina from the unit's preferred retinal location, and (ii) a linear 

gain determined by the unit's preferred eye orientation. The output units each performed a 

linear combination of the hidden units' activities.  

 

It will help to walk through an example involving two hidden units, and restricting 

discussion to two dimensions (what I am about to describe are not actual hidden units in 

the model, but are fictitious exemplars of how the actual hidden units operate). Hidden unit 

h1 would have a preferred location of retinal stimulation, and one factor in its response 

would be a Gaussian function of distance from that spot (see Figure 10). If we number the 

retinal locations in order from 0 to 100 (we are simplifying to a two-dimensional realm, and 

so the retina will be one-dimensional), unit h1 might have its preferred location at location 

70, meaning that this factor in determining the unit's activity is strongest if the stimulus 

projects directly on retinal location 70, and decreases with distance from 70. It still is pretty 

strong at 68 or 72, but very weak at 10 or 98. The second factor influencing h1's activity is 

a linear function of deviation from preferred eye orientation (see Figure 11). This factor 

would be strongest if the eye was oriented either completely to the left or completely to the 

right (whichever the preferred direction is, let's say it is right), and would taper off linearly 

as the eye's orientation went to the other direction (left). 
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Figure 10. Gaussian functions. The graph shows the value of G1(ra), the Gaussian 
used by unit h1 (left), and G2(ra), the Gaussian used by unit h2 (right). The 
Gaussians differ both in terms of their preferred retinal location (peak response of 
G1(ra) is at about 70; G2(ra) is about 30), and their tuning (G1(ra) is narrowly tuned, 
meaning it falls off quickly with distance from the preferred location; G2(ra) is 
broadly tuned, meaning it falls off less quickly with distance from preferred location).  

 

 

 

 

 

 

Figure 11. Linear functions. The graph shows the value of L1(θa), a  linear function 

used by unit h1 (left), and L2(θa), a linear function used by unit h2 (right). The 
function is at its maximum when the eye is oriented either to the far left or far right, 
depending on the preferred orientation. The activity tapers off linearly as the eye’s 
orientation differs from the preferred orientation. 
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Figure 12. Graphical representations of the product of a Gaussian and linear gain. 
The figures show the activity of hidden unit h1 (left) and h2 (right) for 25 different 
combinations of retinal location and eye orientation. Empty circles represent no 
activity (a product at or very near 0), while filled circles' sizes are proportional to the 
unit's activity for that combination. As can be seen, the product of L1(Θa) and G1(ra) 
is highest with a combination of retinal location around 70 and eye orientation fully 
to the right. The product of L2(Θa) and G2(ra) is highest with a combination of retinal 
location around 30 and eye orientation fully to the left.  

 

So for a given combination of retinal location of stimulation and eye orientation, h1 would 

have its firing rate determined as a product of these two factors: a Gaussian of distance 

from preferred location and a linear function of eye orientation. If the eye is orientated 

completely to the right, and the stimulus falls directly at retinal location 70, h1 will fire at its 

maximal rate (see Figure 12). The actual location of the stimulus’s projection on the retina 

together with the eye’s orientation during the sensory episode will determine a firing rate. 

But of course the firing rate of h1 by itself won't tell one where the stimulus is. Suppose that 

h1 is firing at half its maximal rate. This might be a case where the eye orientation is all the 

way to the right, but the retinal stimulation is at location 80, or 60, and hence a bit distant 

from its preferred spot. Or the stimulus might project directly to retinal location 70, but the 

eye might be oriented half way from its preferred direction. Many combinations would yield 

the same firing rate. In any case, each cell's activity is a function of these two factors: 
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(3) h1 = G1(xa)L1(Θa) 

 

Where h1 is the activity (firing rate) of unit h1; xa is the actual location of retinal 

stimulation; G1 is the Gaussian function used by unit h1; Θa is the actual eye orientation; 

and L1 is the linear function used by unit h1.  

 

The activity of unit h2 will be determined similarly: 

 

(4) h2 = G2(xa)L2(Θa) 

 

The Gaussian function G2 may be different from G1 (see Figure 10), in particular σ (a 

constant that determines how narrowly or broadly tuned the Gaussian curve is) may be 

larger or smaller; and it may be centered at a different retinal location. And the linear 

function L2 may be different from L1, i.e. have a different slope. We can streamline our 

notation as follows: 

 

(5) h1 = f1(xa, Θa) 

(6) h2 = f2(xa, Θa) 

 

The function associated with each unit (f1, f2, etc.) will be a linear gain field, a Gaussian 

multiplied by a linear gain. But since the exact form of the Gaussian (center and σ) and the 

slope of the linear gain might be different in each case, they are different functions. More 

generally, for each unit hi, its activity can be expressed as 
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(7) hi = fi(xa, Θa) 

 

In Zipser and Andersen’s model, as explained above, the functions fi are all linear gain 

fields. As is the case with such connectionist models, the output units' activities – where the 

answer gets produced – are simple linear combinations of the activities of the hidden units. 

That is, each output unit Oi is connected to each hidden unit with a scalar connection 

strength or weight, wi,j , which is the strength of the connection from hidden unit i to output 

unit j. This output unit’s output is the sum of all of these weighted connections.  

 

(8) 
  

! 

Oi= 

    

! 

wi,jhj
j=1

n

"  

 

That is, each output unit's activity Oi is the sum, for all j, of the product of the activity of 

hidden unit j and the weight from hidden unit j to output unit i. The set of these output 

unit's activities is the connectionist model's answer. It is a vector representation of the 

direction of the stimulus relative to the head. 

 

(9) S = (O1, O2, … On) 

 

The mathematical representation is helpful, but not essential. For those who have a distaste 

for math, the qualitative idea is this. There are two stages to the solution. In stage one, the 

set of hidden units has learned a particular way of combining the sensory and postural 

signal. This way is that each unit has its activity determined as a slightly different function 

of both of these factors. This is what equation (7) expresses. The second stage involves 

decoding the activities of these hidden units in a certain sort of way. This is codified in 

equations (8) and (9). 
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Note that the fact that the model is limited to one sensory modality (vision), and only one 

postural signal (eye orientation) is only for simplicity. The same mechanisms can easily 

generalize to more realistic cases where not only can the eyes move in the head, but the 

head can move with respect to the torso, etc. In such cases additional signals are needed, 

such as signals coding the head’s orientation with respect to the torso. Similarly, feeling 

something on the tip of my right index finger does not tell me where that object is located 

in egocentric space, unless I have postural information about how my index finger is angled 

with respect to my hand, how my wrist is comported with respect to my forearm, and my 

elbow and shoulder angles, and so forth. In this case too a sensory signal needs to be 

combined with postural signals in order to have enough information to narrow down the 

egocentric location of the stimulus.  

 

Generalizing the notation to these more complicated cases is straight-forward. In the special 

case described in (7), the value xa is a sensory signal – it is information about what is 

happening on the sense receptor, where the sense organ is being stimulated. The value of 

Θa is a postural signal – it is information about how the sense organ is oriented with respect 

to other body parts. We can make the notation more general as in (10): 

 

(10) hi = fi(sa, qa) 

 

Here, sa and qa are the sensory and postural signals associated with stimulus a, whatever 

form they may take. 

 

What makes this model particularly interesting is that after it was determined that these 

artificial units had solved the problem by combining the sensory and postural signal in this 
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particular way (linear gain fields as per equation (3)), this suggested that it was at least 

possible that this was what individual neurons in the PPC were doing. And in fact, single cell 

recordings of neurons in PPC during tasks that required spatial localizations of directions in 

head-centered coordinates revealed that many neurons appeared to have their activity 

modulated in just this way (or close to it, see below). That is, the activity of individual 

neurons in PPC was found to vary with both eye orientation and location of retinal 

stimulation in the non-obvious way suggested by equation (3). Close enough anyway to 

provide some plausibility to the claim that the way these artificial neurons were solving the 

problem might be a window into how the PPC neurons were solving it. 

 

This leads to a more recent proposal by Alexandre Pouget. Pouget's Gauss-sigmoid model 

also can be discerned into two stages, both of which are similar to the corresponding stages 

of the Zipser and Andersen model, but with some significant differences. (Pouget describes 

his model as a ‘basis function’ model, but for reasons I will explain shortly, I want to reserve 

the name ‘basis function model’ for a generalization of Pouget’s model, and so will use the 

specific kind of basis function encoding described by Pouget – Gauss-sigmoid – as the name 

for his model). As in the Zipser and Andersen model, the first stage is an encoding stage, in 

which individual units or neurons combine the sensory and postural signals. The difference 

is that Pouget's model has each unit combining the signals not as a linear gain field (a 

Gaussian times a linear gain as with Zipser and Andersen's model), but by a non-linear 

basis function consisting of the product of a Gaussian and a non-linear sigmoid function (see 

Figure 13). There are information-processing reasons and physiological reasons for 

preferring these basis functions to the linear gain fields of Zipser and Andersen. On the 

information processing side it turns out that non-linear basis functions have convenient 

computational and mathematical properties. I will return to this shortly. The physiological 

reason is that upon closer scrutiny the PPC neurons look as though they may actually be 

implementing these Gauss-sigmoid functions rather than the linear gain fields. (The output 
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of both of these is very similar over most of the dynamic range of neuron's response, and so 

it takes some subtle measurement to tell which is the better fit.) Generally, Gaussians and 

sigmoids are functions that real neurons are known to be able to compute. 

 

 

 

 

Figure 13. A sigmoid function. 

 

The second stage is where the more interesting innovation is to be found. On Pouget's 

model, the basis functions are not just there to supply information to another set of units, 

the output units, that read out the 'correct answer', but are instead used to guide a motor 

response. This works as follows. Every possible type of behavior, such as 'grasp with the 

right hand' involves a complex set of motor control signals, and the exact nature of this 

motor control sequence depends on where the stimulus is. Grasping the coffee cup in front 

of you with your right hand involves a different set of motor commands than grasping it 

when it is down near your left foot. What Pouget has shown is that given a non-linear basis 

function representation of the sensory and postural information, the details of any behavior 

can be appropriately determined as a proprietary linear combination of the values of these 

functions.  

 



Grush Space, time and objects  p44/44 

 

Let’s walk through this more carefully. A stimulus will be processed by the PPC as a set of 

basis functions of the form 

 

(11) Bi(s, q) 

 

Here, each basis function (B1, B2, ...) is an activity of a PPC neuron, its activity being a non-

linear function of the sensory and postural signal, a non-linear version of the Zipser and 

Anderson model; that is, ((3) is essentially a linear version of (11)). The result of this stage 

is similar enough to the Zipser and Andersen model that the differences are not worth 

graphing: except for the change from a line to a sigmoid and a corresponding slight 

difference in the exact form of graphs such as those in Figure 12, a parallel set of figures 

corresponding to a Gauss-sigmoid field would look very similar. A given perception of a 

stimulus will involve a certain sensory signal and set of postural signals, the s and the q 

associated with the sensing of the stimulus, and the PPC applies a large number of basis 

functions of the form of (11) to these signals. The result is a lot of PPC neurons, each firing 

at a rate determined by its own version of (11).  

 

A given kind of behavior, such as a grasp with the left hand, or a foveating eye movement, 

is associated with a set of scalar coefficients (the mathematical version of neural connection 

strengths). So for example a motor behavior such as a left-hand grasp would have a 

proprietary and constant set of numbers, g1, g2, …, gn, such that when those coefficients 

are used to produce a linear combination of the basis function values associated with 

stimulus a, the stimulus-a-targeted behavior is correctly executed: 
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 (12)
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(13)
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What (13) says is that the neural motor commands that result in a left-hand grasp of 

stimulus a can be represented as a vector 
  

! 

a,g
M , each component of which is 

  

! 

j
a,g

m , and is 

arrived at by multiplying numbers associated with a left-hand grasp (the gi,j coefficients) 

and the basis functions associated with stimulus a, (the 
  

! 

i
a

B s) and adding them together, as 

per (12).  

 

Of course a left-hand grasp directed at stimulus b will require a different motor command if 

b is located at a different spot in egocentric space. A left-hand grasp directed at b would be 

determined by: 

 

(14)
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(15)
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Here, the different motor command 
  

! 

b,g
M , the command that results in a left-hand grasp of 

stimulus b, is produced by taking the same set of left-hand grasp coefficients, the gi,js, and 

multiplying them with a different set of basis function values – the ones that the basis 

functions yield when applied to the sensory and postural signals produced during the 

sensing of stimulus b: 
  

! 

i
b

B . A different kind of action, like an eye movement that foveates 

stimulus a or b, would be determined in an analogous way: by multiplying the eye 
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movement coefficients (ei,j) with the basis functions produced by the stimulus according to 

the following equations that should not need elaboration at this point: 

 

(16)
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5. Emulation and basis functions  

 

The emulation theory and the basis function model are not in conflict. The emulation theory 

is a description of how a representation of some process can play a role in a larger 

information processing structure that underwrites various capacities, such as imagery, 

perceptual processing, the dulling of the detrimental effect of feedback delays, and the 

filtering of sensor noise. The emulation theory makes no requirements on how the emulator 

itself is implemented, with the exception of the requirement that however it is implemented 

it must be able to play its role in the larger structure. The emulator might be implemented 

in a physical model, like in old-school ship navigation; or it might be implemented in a 

digital data structure. So long as it can be used to provide a priori estimates, be updated to 

form a posteriori estimates, be driven off-line to produce imagery, etc., the details don’t 

matter – at least not so far as the emulation theory itself is concerned. 
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I claimed that for higher organisms, including humans, normal perception of the 

environment involved the use of an amodal environment emulator. This emulator maintains 

representations of the spatial comportment of objects and surfaces in the environment, as 

well as their movement and force-dynamical interactions. One aspect of this is clearly the 

spatial aspect. The emulation theory does not specify how these spatial properties and 

relations are represented, so long as they are able to engage in the kinds of processes the 

emulation theory posits.  

 

The basis function model is a theory of how the brain processes information to track the 

location of objects in the environment. This theory was presented (both by me in Section 4, 

as well as by the original authors, though they did not put it in these terms) as a pure 

measurement inverse – one that goes from sensed signals (in this case, sensory and 

postural signals) to a construction of a representation of the spatial properties and relations 

of entities in the environment, which in this case is in terms of a set of basis function values 

that were determined by the relevant sensory and postural signals: 

 

(20) Bi(s, q) 

 

The advantage of representing spatial locations as sets of basis function values is that in 

this format they can be used immediately (without further processing) by the motor centers 

to produce appropriate actions, as described in the previous section.  

 

But note that the ‘sensory’ and ‘postural’ signals are observed signals –  unfiltered signals 

going directly from the process (the body and its sense organs) to the PPC. These observed 

signals are then combined via basis functions and linearly combined with a set of 
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coefficients appropriate to the target behavior. The result is a motor command that, if all 

works well, results in the target behavior being produced. To put it in other words, the basis 

function model as described by Pouget and collaborators, and as I have described it above, 

is an implementation of a closed-loop control scheme. It specifies one way to construct a 

closed-loop controller that will produce the right motor command when given feedback (the 

observed sensory and postural signals) from the process. 

 

During the discussion of the control theoretic material we never had a need for notation for 

a process state estimate that was nothing more than the observed signal pushed through a 

measurement inverse. I will now use an inverted hat for this purpose:     

! 

( 
p (t) = O-1s(t). Given 

this, the basis function values as discussed by Pouget and myself above are:  

 

(21) 
  

! 

( 

B i(    

! 

( 
s ,    

! 

( 
q ) 

 

Here, the sensory signal and the postural signal are completely unfiltered (hence the upside 

down hats), and as a result the basis function values are an unfiltered measurement 

inverse. 

 

Just like any other observed signal and associated process state estimate, the sensory and 

postural signals and the resulting basis function values might benefit from some filtering. 

What this requires in the present case is an emulator or emulators of the spatial features of 

objects in the environment. Such an emulator will simply be a mechanism that can take a 

representation of the spatial features at t, together with an efference copy, if any, and 

produce an estimate of the spatial features at t+1. If we let Bi(t) be the values of the basis 

functions produced at time t, then the spatial process model would be some mechanism 

that implemented the following: 
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(22) 
  

! 

iB (t+1) = V
  

! 

i
ˆ 
B (t) + c(t) 

 

That  is, it produces an a priori estimate of what the next set of basis function values will be 

on the basis of the previous set (in this case, the previous a posteriori estimate) and any 

efference copies. There are two ways this might be implemented, and there is no reason to 

assume that only one of them is in play in the PPC.  

 

First, since each set of basis function values is determined by sensory and postural signals, 

then any a priori estimate of the sensory and postural signals will be suitable to produce an 

a priori estimate of the basis functions: 

 

(23) 
  

! 

iB (t+1) = Bi(  

! 

s (t+1),   

! 

q (t+1)) 

(24)  

! 

s (t+1) = Vs  

! 

ˆ s (t) + c(t);   

! 

q (t+1) = Vq  

! 

q (t) + c(t) 

 

Here   

! 

s (t) and   

! 

q (t) are a priori estimates, at time t, of the sensory and postural signals. 

The functions Vs and Vq are functions that describe how the sensory states and postural 

states evolve over time (they are sensory and postural versions of the function V that was 

used by the KF to model the process’s dynamics).  

 

The attentive reader will have noted that all of this can be accomplished by mechanisms 

already discussed in previous sections: the a priori and a posteriori estimates of postural 

signals just are signals concerning the configuration of the body, and are supplied by the 

musculoskeletal emulator, the same one used for motor imagery, motor planning and so 

forth; the sensory signals are signals concerning the information incoming from the various 

sense organs, and are supplied by modality-specific emulators of the various senses (for 
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example, the Duhamel et al (1992) result that I analyzed as a visual image emulator in 

section 2.3). In other words, emulators already argued to be in play on independent 

grounds supply the information required to produce a priori estimates of the basis function 

values associated with a stimulus’s spatial location.  

 

A second method involves mechanisms that have not already been introduced. This would 

be a mechanism that simply evolves the basis function values themselves over time in 

accordance with information about how the spatial features of perceived objects typically 

evolve over time: 

 

(25)
  

! 

iB (t+1) = VB
  

! 

i
ˆ 
B 

(t) + c(t) 

 

Here VB is a function that describes how the basis function values evolve over time, which 

maps the way that the spatial features of represented objects evolve over time.  

 

At the same time that an a priori estimate of the basis function values is produced as per 

(23) and/or (25) at time t, a purely bottom up process – a measurement inverse – produces 

a set of basis function values that are what the sensors say about the spatial features of the 

environment at t. The two are combined in the way described in Section 5.2 order to 

produce an a posteriori estimate of the spatial features of the environment at t: 

 

(26)
  

! 

i
ˆ 
B (t) = 
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iB (t) + K[
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i

( 

B (t)]) 

 

This is exactly the procedure already discussed in Section 2 as an amodal emulation of the 

spatial features of the environment. The current a posteriori estimate of the basis function 

values is the current a priori estimate plus a correction, which is the difference between the 
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a priori estimate and the values based solely on the observed signal (the sensory residual) 

multiplied by a gain term K. 

 

To this point, the synthesis of emulation theory and the basis function approach to spatial 

representation has been limited to temporally punctate case of purely spatial 

representation. In this section I will expand this framework in order to explain the 

implementation of spatiotemporal trajectory representation. The generalization in the case 

of the emulation theory has already been discussed in Section 3. Now what remains is to 

state the basis function model in such a way that it can be implemented in a trajectory 

emulation system. 

 

A conceptually simple generalization is entirely straight-forward. The production of 

smoothed and predicted estimates of both the sensory and postural signals over the 

temporal interval [t-l, t+k] can yield the set of basis function values subserving the 

representation of the spatial trajectory of the stimulus over that interval. If we let   

! 

ˆ 
B i,a/[b] be 

the estimate of the ith basis function value at time b, produced at time a, then this ordered 

set can be expressed as:  

 

(27) ([  

! 

˜ 
B 1,[t-l]/t, …,   

! 

˜ 
B n,[t-l]/t], …, [  

! 

ˆ 
B 1,[t]/t, …,   

! 

ˆ 
B n,[t]/t], …, [  

! 

B 1,[t+k]/t, …,   

! 

B n,[t+k]/t]). 

 

This simple generalization posits, for each time step in the interval spanned by the 

trajectory estimation emulator, a separate set of basis function values, each based upon the 

smoothed (  

! 

˜ 
B i), filtered (  

! 

ˆ 
B i), or predicted (  

! 

B i) basis function value estimates corresponding 

to that time step. While this generalization is conceptually simple, it is also conceptually 

inelegant. A slightly more sophisticated generalization is not only more aesthetically comely, 
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but interfaces with other elements of the basis function model better – and more 

realistically – than the simple generalization. 

 

Given that there are estimates of the sensory and postural states throughout the interval 

available, it is not necessary to produce a separate set of basis function values for each time 

step. Rather, a single set of basis function values can be produced based on the entire 

interval estimates of the sensory and postural signals. This will require the use of more 

complicated basis functions, of course, but I won’t go explore the details of that here. If we 

let   

! 

˜ s [t-l, t+k]/t be the smoothed estimate, produced at time t, for the trajectory of sensory 

states over the interval [t-l, t+k] (and use similar notation for postural estimates), then we 

can define a single vector of basis function values as: 

 

(28) (

! 

˜ 
B 1(

! 

˜ s [t-l,t+k]/t,   

! 

˜ q [t-l,t+k]/t), …,  

! 

˜ 
B n(

! 

˜ s [t-l,t+k]/t,   

! 

˜ q [t-l,t+k]/t) 

 

Or yet more notationally conveniently as: 

 

(29) (

! 

˜ 
B 1,[t-l,t+k]/t, …, 

! 

˜ 
B n,[t-l,t+k]/t) 

 

This is not merely an exercise in notational parsimony. We must keep in mind the point of 

these basis functions, which is to guide motor behavior by combining with sets of 

coefficients appropriate for those behaviors. In the static case we had a motor behavior, 

such as a left-hand grasp of stimulus a, determined by something like (12) and (13), 

repeated here as (30) for convenience: 
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This was fine for a stationary object, for in such a case the fact that the motor behavior 

takes time can be ignored. The basis function values associated with the egocentric location 

of the object will not themselves change during the course of the motor behavior. But in the 

temporally non-degenerate case this cannot be ignored. Grasping a moving object requires 

movement of the hand not to where the object now is, but to where it will be. And if there 

are different sets of basis function values for each time, then there will be different sets of 

basis function values associated with the object’s location now, and its location at the time 

of the grasp.  

 

So why not just let each motor behavior be determined as in the static case, but with the 

right set of temporally punctate basis function values – the ones that correspond to the 

location of the object at the anticipated time of the grasp? If this could be done, then there 

would be no reason to prefer (29) over (27). The problem is that which time in the future is 

the appropriate one for timing the grasp depends on the object’s trajectory. If the object is 

moving very quickly then the grasp will have to be sooner than a case where the object is 

moving very slowly, even if the spatial location of the grasp is the same in both cases. If the 

trajectory is represented by an ordered set of sets of basis functions, then some other 

mechanism would have to have access to this set, and determine which of them is the 

appropriate time of a grasp interception, and then indicate to the motor system which set of 

basis functions it should use to combine with the behavior’s coefficients. 

 

While this could work in principle, the approach cuts completely against the conceptual grain 

of the basis function model. The point of this model is to explain how combinations of 

sensory and postural signals combine so as to organically guide motor behavior without the 

need for intervening levels of representation or micromanagement. The simple 

generalization as expressed in (27), when we attempt to reintegrate it with the behavioral 
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output part of the model, introduces exactly such intermediaries – a system that examines 

the set of basis functions, somehow picks one out as appropriate, and then feeds that one 

to the behavior-appropriate coefficients. 

 

The more sophisticated generalization maintains the elegance of the static case. A motor 

behavior can still be associated with a set of proprietary coefficients that combine with a set 

of basis functions. A grasp will be produced by something like 
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Here (31) is just as before: the motor command 
  

! 

a,g
M  to execute a left-hand grasp of 

moving stimulus a is a vector each of whose elements is described in (32). This is where the 

difference is. Each of these elements 
  

! 

j
a,g

m  is a linear combination of basis function values 

coding the estimate for the target stimulus’s trajectory over the window’s interval, not 

simply its location at one time. 

 

Because this single set of basis functions of the form 
    

! 

i,[t-l,t+k]/t
a

B  contains all the relevant 

information about the object a’s trajectory over the represented interval (not just its 

location at the present time), the values these basis functions yield on any given occasion 

are capable in principle of combining with a set of behavior-specific coefficients to produce 

an appropriate motor output, even for moving stimuli.  
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6 Discussion 

 

It will be noted that I advertised my goal as providing a unified neural information 

processing structure for the representation of behavioral space, behavioral time, and 

objects. And while I have had sections on space and time, objects seem to have not 

made an appearance. I will close with a few words about objects. 

 

Though it has been implicit, objects have been addressed all along. The behavioral-

spatial representation, both in temporally punctate and temporally extended form, is 

built around behavioral objects as defined in Section 1. The basis functions are 

functions of sensory and postural signals, and the sensory signals are, in the first 

instance, signals from some stimulus – such as a light that is detected on the 

retinae. And the basis functions’ entire purpose is to support a linear decoding via a 

motor-behavior-specific set of coefficients to produce a bodily action that is directed 

upon that stimulus – such as grasping or foveating the seen object. The stimulus, 

the entity that is the accusative of both perception and action, is the behavioral 

object that is represented by the basis function values. 

 

Now of course this is not an object in the usual sense of ‘object’ beloved of 

philosophers. The objects playing a role in my account could be rocks or bugs or 

branches, but could just as well be shadows, or luminance edges, or holes. There is 

little conceptual room at this stage of representation between a location in behavioral 

space and a behavioral object. They are ‘objects’ in the sense of a potential focus of 

perception and action.  

 

I believe that the capacity to represent behavioral-space, -time, and –objects is a 

very fundamental feature of cognition and mentality. Surely there are more basic 
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functions of the nervous system, functions that pre-date those I have discussed 

here. There is regulation of internal processes, managing of reflexes, and central 

pattern generators. But my hunch is that if we are interested in those nervous 

system functions that are fundamental to cognition and mentality, then the capacity 

to represent an environment of actionable objects is about as fundamental as it gets. 
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