“Slow Mapping” in Children’s Acquisition of Semantic Relations

Gedeon O. Deák
Department of Cognitive Science and Human Development Program,
University of California, San Diego

Jennifer Hughes Wagner

Are children precocious word learners?

- Does children’s word learning rest on specialized inductive processes?

- **Historical background:**
 - Modularity of language; species-specific learning

- **Empirical background:**
 - Vocabulary growth
 - Processes of word learning: “Constraints”
 - *Fast mapping*
Fast Mapping: The evidence

Carey & Bartlett (1978):
- taught 3-4-year-olds 1 color word (said 2x); used semantic contrast to disambiguate referent
 - 9 of 14 children immediately chose referent
 - 1 week comprehension: 9 of 14 chose same color (from 5 focal distractor colors)
 - same in control children

Heibeck & Markman (1987):
- 2-4-year-olds; heard 1 word twice (for color, texture or shape)
 - 10-min. 18% correct production
 - 10-min. 63% correct comprehension (4 novel items)
Is Fast Mapping a specialized word learning skill?

Deák & Gendreau: Taught 4/5-year-olds 3 or 4…

- novel words
- facts w/ novel words
- “mundane” facts
- pictorial symbols
 - Four comprehension tests; production & generalization tests
Deák & Gendreau information types…

<table>
<thead>
<tr>
<th>Novel Symbols</th>
<th>Novel Words</th>
<th>Facts (Mundane)</th>
<th>Facts/Novel Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Exp. 1)</td>
<td>(Exps. 1 & 2)</td>
<td>(Exp. 2)</td>
<td>(Exp. 2)</td>
</tr>
<tr>
<td>Tama</td>
<td>“My sister gave this to me.”</td>
<td>“My tama gave this to me.”</td>
<td></td>
</tr>
<tr>
<td>Oni</td>
<td>“My friend also has this.”</td>
<td>“My oni also has this.”</td>
<td></td>
</tr>
<tr>
<td>Saybu</td>
<td>“This is from Japan.”</td>
<td>“This is from saybu.”</td>
<td></td>
</tr>
<tr>
<td>Kumo</td>
<td>“I keep this on my desk.”</td>
<td>“I keep this on my kumo.”</td>
<td></td>
</tr>
</tbody>
</table>
Test: Are one-to-one mappings easier to learn? Is this true only for novel words?

One-to-One: Words

<table>
<thead>
<tr>
<th>NW₁</th>
<th>NW₂</th>
<th>NW₃</th>
<th>NW₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₁</td>
<td>NO₂</td>
<td>NO₃</td>
<td>NO₄</td>
</tr>
</tbody>
</table>

One-to-One: Symbols

<table>
<thead>
<tr>
<th>NS₁</th>
<th>NS₂</th>
<th>NS₃</th>
<th>NS₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₁</td>
<td>NO₂</td>
<td>NO₃</td>
<td>NO₄</td>
</tr>
</tbody>
</table>

Many-to-One: Words

<table>
<thead>
<tr>
<th>NW₁</th>
<th>NW₂</th>
<th>NW₃</th>
<th>NW₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₁</td>
<td>[NO₂]</td>
<td>NO₃</td>
<td>NO₄</td>
</tr>
</tbody>
</table>

Many-to-One: Symbols

<table>
<thead>
<tr>
<th>NS₁</th>
<th>NS₂</th>
<th>NS₃</th>
<th>NS₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₁</td>
<td>NO₂</td>
<td>NO₃</td>
<td>NO₄</td>
</tr>
</tbody>
</table>
Study 2: Rigorous test of mapping complexity: Keep # of mappings constant; compare verbal info

One-to-One: Words

\[
\begin{align*}
NW_1 & \quad NW_2 & \quad NW_3 & \quad NW_4 \\
\downarrow & \quad \downarrow & \quad \downarrow & \quad \downarrow \\
NO_1 & \quad NO_2 & \quad NO_3 & \quad NO_4
\end{align*}
\]

One-to-One: Facts

\[
\begin{align*}
NF_1 & \quad NF_2 & \quad NF_3 & \quad NF_4 \\
\downarrow & \quad \downarrow & \quad \downarrow & \quad \downarrow \\
NO_1 & \quad NO_2 & \quad NO_3 & \quad NO_4
\end{align*}
\]

Many-to-One: Words

\[
\begin{align*}
NW_1 & \quad NW_2 & \quad NW_3 \\
\downarrow & \quad \downarrow & \quad \downarrow \\
NO_1 & \quad [NO_2] & \quad NO_3 & \quad NO_4
\end{align*}
\]

Many-to-One: Facts

\[
\begin{align*}
NF_1 & \quad NF_2 & \quad NF_3 \\
\downarrow & \quad \downarrow & \quad \downarrow \\
NO_1 & \quad [NO_2] & \quad NO_3 & \quad NO_4
\end{align*}
\]
Words or pictorial symbols? Comprehension

![Bar chart showing the proportion correct comprehension for different blocks and types of stimuli.](chart.png)
Words or facts? Comprehension & production…
Findings...

- Words (object count nouns, e.g., *tama*, etc.): learned *slower* than facts or symbols (1-5 exposures)
 - In comprehension, production, & generalization measures
 - “mere presence” of a novel lexeme impedes learning

- Is the problem integrating new words with semantic networks and hierarchies?
Semantic relations & word learning:

Are semantic relations hard for children to learn? Are some easier to learn than others?
- No test of fast mapping has probed children’s inferences about semantic relations among novel words
- Markman (1989, 1994): Children tend to infer exclusivity relation between novel and known words
- Controversy: Can preschool children properly infer class inclusion relations? (Piaget: No)
 - Smith (1979): 5-year-olds make inferences about hierarchical relations
 - 3-/4-year-olds produce several labels, in semantically appropriate contexts, for a referent (Deák & Maratsos, 1998; Deák et al., 2002)
Learning new semantic relations: Studies in a controlled micro-world

- Test preschool children’s ability to infer semantic relation between new words
 - Differentiate inclusive, overlapping, and exclusive relations
 - Biological and occupational categories (of social organisms)

- “Alien” micro-world: Novel biological & occupation categories with well-defined relations
 - Are inclusion relations easier to learn than overlapping relations?
 - Are exclusion relations easiest to learn?
 - Does explicit input about semantic relations help children?
Experiment 1 method

Participants: 48 children aged 4 to 7 years

Materials: Diorama w/ prop buildings & materials

Four categories of “alien” creatures

Design:

<table>
<thead>
<tr>
<th>Relations</th>
<th>Input</th>
<th>Inclusive</th>
<th>Exclusive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit</td>
<td>SB</td>
<td>BB₁ ⊙</td>
<td>BB₁ BO₂</td>
</tr>
<tr>
<td></td>
<td>SO</td>
<td>BO₁ ⊙</td>
<td>BO₁ BO₂</td>
</tr>
<tr>
<td>Implicit</td>
<td>SB</td>
<td>BB₁ ⊙</td>
<td>BB₁ BO₂</td>
</tr>
<tr>
<td></td>
<td>SO</td>
<td>BO₁ ⊙</td>
<td>BO₁ BO₂</td>
</tr>
</tbody>
</table>

- "All fegs are wuddles!"
- "A cragger can’t be an moser!"
Exp. 1 procedure…

Training session 1:
- Taught 4 words on 2 unique exemplars/word
 - Each word repeated 6x/exemplar
 - Defining features pointed out each time named
 - “This is a *feg*…because it’s green, and it has a tail”
 - “…is a *mosser*…it wears an apron & washes [these]”

Training session 2:
- Review words; 2 different exemplars/word
 - Each word repeated 9 more times

Production test:
- 5 new exemplars w/features consistent w/ 2-4 categories

Comprehension test:
 Verify category membership, for each word, of 15 new exemplars
Results: Production

$p < .002$

Number words correctly produced

4/5-year-olds 6/7-year-olds

Implicit Explicit

ns
Did children produce co-extensive word pairs?

![Bar chart showing co-extensive word pairs produced by 4/5-year-olds and 6/7-year-olds. The chart indicates that 6/7-year-olds produced more co-extensive word pairs compared to 4/5-year-olds.]
Results: Comprehension

\[p < .003 \]

Number of words understood

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Implicit</th>
<th>Explicit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/5-year-olds</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>6/7-year-old</td>
<td>3.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

The 6/7-year-olds have a significantly higher number of words understood compared to the 4/5-year-olds, with a p-value of less than 0.003.

The difference between implicit and explicit comprehension for the 6/7-year-olds is not statistically significant (ns).
Did children represent correct relation between word pairs (comprehension)?

(\textit{most of these are correct exclusion relations})

- 4/5-year-olds
- 6/7-year-olds

<table>
<thead>
<tr>
<th>Relation</th>
<th>4/5-year-olds</th>
<th>6/7-year-olds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species-Species</td>
<td>0.40</td>
<td>0.60</td>
</tr>
<tr>
<td>Occ-Occ</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>Species-Occ</td>
<td>0.10</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Conclusions: Experiment 1

- Older children understood and produced 2-3 words after 21 exposures (ostension + definition)
 - 4/5-year-olds typically learned 1 of 4 words

- Learning semantic relations between words:
 - Explicit input about semantic relation did not help
 - 4/5-year-olds seldom produced 2 or more words for a referent, despite prompts
 - 4/5-year-olds often inferred exclusion relation between species and occupation words (Markman, 1991)
 - 6- and 7-year-olds learned more semantic relations

- Ruling out inattention: $n = 8$ randomly chosen children looked at exemplar or experimenter’s face in $M = 95\%$ naming episodes.
Experiment 2: Replication

Modifications:
- Changed some features to make categories more distinctive & memorable
- Added training exemplars to clarify that multiple species could have any occupation
- Scenarios/stories added to make training more play-like; Prompted & reinforced children for naming exemplars

Participants:
- $n = 24$ 4/5-year-olds
- $n = 24$ 6/7-year-olds
Experiment 2 results: Production

Number words correctly produced

4/5-year-olds 6/7-year-olds

Implicit Explicit

$p < .001$

ns
Co-extension of words? (Experiment 2)

<table>
<thead>
<tr>
<th>Overlap relation (N = 48)</th>
<th>No Spec-Occ overlap</th>
<th>Allow Spec-Occ overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/5-year-olds</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>6/7-year-olds</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>

\[\chi^2 (df = 1) = 8.4, \quad p < .005 \]

<table>
<thead>
<tr>
<th>Inclusion relation (N = 24)</th>
<th>No inclusion</th>
<th>Allow inclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/5-year-olds</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6/7-year-olds</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>
Conclusions for now

What is general about word learning? (Deák, 2000)
- Sensitive to frequency and correlation, delay, cognitive load, cue validity, perceptual ‘set’, priming, discrimination/contrast
- Motives to: affiliate; predict/influence others’ behavior; play; learn

What is unique about the lexicon-learner relation?
- Must acquire fast access to large set w/ complex systems of associations & relations (e.g., phonology, morphology, syntax
- Flexible uses & senses: metaphor; polysemy/polynomy

Does this rest on dedicated learning mechanisms?
- Words are not learned more easily than, e.g., facts or figures
- Non-lexical patterns of input can draw infants’ attention to categories, objects, etc.
Conclusions continued

4/5-year-olds do not learn a small lexical-semantic system, even after 20+ repetitions (ostension & definition)

Most children misconstrue semantic relations among new words
 - Exclusion relations are most readily inferred (Markman, 1994)

Conundrum: If children have such trouble, how do they learn correct relations between real words? (Deák & Maratsos, 1998)
 - cognitive load might have limited inductive processing or memory

Future questions:
 - How do cognitive load, learning context, input (e.g., definitions), & word kinds interact with processes of learning semantic relations?
 - “What develops?”: Why do 6/7-year-olds do better?
Thanks to…

- National Academy of Education and Spencer Foundation for material support
- Kathryn Bournazos, Mary Love, & Dan Michel for assistance with data collection and coding