Chapter 9:
Blending and NLP

9.0 Introduction

In this chapter, Will discussresearch ircomputationaNatural Languagédrocessing
(NLP), in light of thelinguistic blending analysis ithe previous chaptershe discussion
and examples wilfocus onthe problem oMachineTranslation(MT) - the computational
translation of texrom onenatural language tanother. Thaaim of this chapter is not to
propose computational modéts natural languagprocessing and translatioRather, the
aim is toanalyze the theoreticahplications ofthe blendinganalysis (in chapter2-7) for
future directions of research in NLP.

As Kay et al. (1994) note in theintroduction totheir book onthe Verbmobilspeech
machine-translatiomproject, “to many laymen, it isincomprehensible that wean build
machinery that can convey a man to the moon, but r@tecan translate even very simple
texts into French” (p.3). After many years of painful efforts in NLP, researchers still find it
hard to identify what it igxactlyabout languagand translation that defiedl attempts of
computationaimodeling, andust what could improvehe quality of theresult. In this
chapter, | point tdhe role of linguistidblending operations ame sourceof difficulty for
computational modelingf languageprocessing and as amportant directionfor future
research.

Maybe the most problematic aspectofmputational language modeliisgthe influence
of contexton languageinterpretation.Numerous reearches in NLP (e.g., Kay et al,
1994; Nirenburget al, 1992; Melby, 1995havediscussedhe role of coréxt as adding
shades ofmeaning to linguistic forms, and influencing tha@mnslation. Input texts, it is
suggested, cannot be processesatation: ratheinformationfrom the contextual setting

of the textmust betaken into acount. Theterm contextincludes bothlinguistic context



(i.e., the previous sketch oftext ordiscourseand, how itinfluencesthe interpretation of
the currenutterance)generalworld (“common sase”) knowledgeand thecultural and
communicativesetting (see section 9.1.3Kay et al. (1994) maintain thatlanguage is
alwayssituatedin some contextual setting, and ttie importance othe contextual setting
is erroneously overlookedince speakerdake it for granted.Discussingthe role of the
contextualsetting intranslation, Kayet al. note: “everyprofessionaltranslator iskeenly
awarethat a great deahore than linguistikknowledge is requiredor the job . . .That
crucial knowledgethat atranslatormust havehas almostalwaysbeen overlooked . . .
because it is shared by most humasgecially when they hawelargely commorculture”
(p. 6). Inrecentyears variousattempts have beemade to incorporate contextual
knowledge into NLP systemBirst, knowledge-basechethodsdeveloped in Al(Artificial
Intelligence) were adopted in NLP systems in the forraxtof-linguistic world-knowledge
data-baseshat guide the linguistigorocessing oinput texts (see sectio.2). Second,
methods for computing textual context are also being devéloped

In this section, | will suggest that additional crucial skill @aranslator (oany language
speaker)possesses halseen overlookedn research oncomputational modeling of
language: the ability to creatively generated interpre linguistic blends of the sort
discussed irthis dissertation (chapte& 7). While contextualknowledge haslayed a
central role in the examplstudied inpreviouschaptergfor example, inthe impositionof
prototypicd cultural-experientialscenarios on interpiaion of blends),the discussion in

this chapter willconcentrate not so much on the role of conteXtnaiviedge inlanguage

1 While the variousknowledgerepresentatiosystems in Alhave traditionally stressedrepresentation of
isolatedpropositionalmeaning, we do find recent attempts to incorporate considerationslafgbetextual
context For example, Hovy (1988a,b) incorporates planning at the levelibsententiatext in language
generation. Nirenburgt al. (1992) reporthat in the computation of meaning ioput texts,information
about the “setting of the communication situation”imgorporatedincluding parameterssuch as“the
properties of the participants and their relative social status” (p. 75).



processing as much as tre necessarymechanismgor manipulatingworld knowledge
and linking it to linguisticstructures. Fothe discussion irthis chapter, will assumehat
“general world knowledge" (e.g., knowledge on prototypscainarios in thevorld, or the
functions of objets in the culture, etc.) isalready coded insome forminto the
computational system. Thesue Iwill focus on ishow this knowledge is dymaically
accessed anthanipulatedfor the purpose oflanguageprocessing. ill claim that the
dynamics of mechanisnsuch asblending hasbeen largelyignored in NLP, and that
research on understanding and modeling suethanisms must faursued inaddition to,
or in parallel with, research orthe coding (or statistical extraction) ofcommon-sense"
knowledge. The discussion in this chapter focusethercompleXinks thatexist between
grammatical form&ndsemantic structureS’he sentences to loksscussedareisolated(de-
contextualized) sgences, sthe role ofdiscourse context (aritle set ofpre-assumptions

it defines) will be ignored in this chapter.

The analysis inthe previous chapters ofthe dissertationsuggested thatinguistic
processing ofeven verybasic clausestructures(such asthe English Caused-Motion
construction, othe various Hebrewbasic syntatc constructions andinyanin) involves
complex mapping and integrati@perationsThe language by itsefirovides onlypartial
cues for the "de-integration” process:the "un-packing” andelaboration of linguistic
utterances into conceptuadpresentationsThe analysis alsosuggests that much of the
"integration” and "de-integration” opd&i@ns are automatic,especiallywhen triggered by
very entrenched;onventional linguistiblends.What the entrenchmemoes ismake the
blending configuration less no&able, but thélending schemathemselvegextracted and
generalized from many linguistic instances) are still available for congorousssing. The
corscious processing of blending operaionsis particularly noticeble in novelgrammatical

blends (e.g., in the coinage of novel rbatyancombinations irHebrew - sction4.3, or



in novel lexical-syntactt combinationsexpressingcaused-motion events in English -
section 2.1), or duringranslationwhen switching between different blending conventions
in different languagesequires their conscious processin@hapter8). But adivation of
blends alsaakesplace in theeverydayautomaticelaboration ofsentences duringheir
interpretation (for example, the Hebrew steiffil marks that the event denoted thg root

is part of a larger causalequenceThe binyan thus promptshe hearer teelaboratethe
semantic conteraf the linguisticstructure,chapter4). In this chapter, will discuss the
role of such "conscious" reconstruction of blending configurations in NLP systems.

Through the analysis in this chapter, | will make the following claims:

(1) ThoughmanyNLP systemsncorporate vasamount of generalvorld knowledge
(in theform of hand-coded ostatistically extractedules), the use ofthese databases in
generating a “functionally sufficien8emantic reg@sentation of linguististructures isstill
very limited. In actual practicepntextual knowledges usedprimarily to disambiguatéhe
input text, butrarely toadd information notexplicitly provided inthe text (information
which may be necessary for further processing, e.g. translation).

(2) A mistake isoften made when dealing with failres of an NLP system(e.g.,
failures inproviding acorrect“semantic model” ottranslation, for arinput sentence) in
assumingthat the linguisticand world knowledge structuresncodedin the system are
necessarily inaccurate and shookdmodifiedor extendedOften theknowledge structures
are accurate and complete, dinel failure of thesystem results frorthe speaker’screative
integration (blending)of pemarent knowledge structuremto new temporarystructures.
The novelty of the input text is in thveay the defaultstructuresare linguistically integrated
together (and henaelated to eaclthersemantically in thesentence), anthe goal of the
system is tareconstruct these noveémporaryblendsfor successful processing of the
sentenceModifying the permanenknowledge-bases ahe systemwill not provide a

general solution in such cases.



(3) Applying contextualworld knowledge solelyvia "pragmatics” modules which
modifyan interpretationf a sentencefter a basicsemanticstructure is comyted is often
ineffective. Inthe examplegliscussed irthis dissertationyorld knowledge guides the
very basic assignment of a minimal semantic structure to a linguistic utterance.

(4) Pre-encodednference rules can captureonly the most entrenched (repeated)
instances of blending'hey cannosolvethe core problem ablending.Reconstruction of
blends has tde performedon-line, simulating human cognitive eativity in finding
analogies angerforming analogicamnapping betweenretrievedknowledge structureand
linguistic forms. To interpret @entence in theiew of this dissertation is to reconstruct a
set of correspondences--a mapping--betwelargaistic form andconceptualknowledge)

structures.

It should benoted here #it thoughthe discussion irthis chaptersuggests thaturrent
underlyng assumptions ofNLP research cannogenerally support the findings of
grammatical blending anlanslation inthis dissertationthe discussion does nattend to
imply that NLP research in its current form is ineffective. Not at all, because, in spite of the
immensecreativenature ofthought andanguage(as reflected in theblending examples
discussed irthis dissertation)much of languagese is infact entrenchedand predictable
(if not ina deterministiavay, then ateaststatistically). CurrenNLP systemsan capture
these repeated entrenched chunks of discourse and the conventional edmeextsey are
produced, and the partialiccess of NLP systenteday shows thaindeed these methods
can produce acceptable resultstomne extent. In particulathe surprisingrelative success
of statistical NLR(including statisticalMT, see sectio®.1.2.1) which is basean simply
reiterating pieces of sentences freristing corpora, points to @evalenttrait of language
generation by human: chunks of discourse are repeaigebpje over and @r again. The

analysis inthe chapter claimBowever that fothe future goal ofhighly automated\LP,



mechanismgor creativeprocessing ofanguagemust be nderstood andncorporated as
well.

The main challenge is théollowing: could automatic language processing(e.g.,
translation of eververy simple technicaltexts) be doneaccuratelyenough without the
incorporation of dynamic cognitive processes sagmapping, blendingnd integration of
representationatructures? My analysisuggestsprobably not!And acknowledging the
importance ofsuch processes ithe first stepin enhancingNLP technology.Even if
completelyautomaticmodeling of analgical mapping and integrationoperations is not
possible at this stage, some tbhé conceptuablending power can beincorporatedinto
computational system$or example, by encoding various levelsenitrenchedlends and
using statistical information tthoose amongossibleblends, or byincorporating human-
machine interaction into NLP systems to interpret or gengratematicablends(the latter
issuewill be discussed very briefly ithe conclusions ection9.3). Theincorporation of
such mechanisms requires first that uvelerstandhem: weneed toknow how andwhen
blending mechanismiake placein languageprocessing in order taentify the kind of
knowledge we need to encodeNihLP systemsandhow NLP systemsould processhis
knowledge. In addition, even if blending mechanisms cannot be cometelyated with
current computational techniques, istsll important torealizewhich aspects athe failure
of NLP technology are due simply soaleproblem(which more powerful computers and
better algorithms casolve),and whichare due tdhe \ery nature of languageprocessing

versus current computational technigues

2t is often the case that the shortcomings of current NLP technology are attributed to insficaces
in either of two underlying sciences:
(1) EormalLinguistics- The scientific understanding of tf@mal properties offrammaticalsystems is
still far from being complete. A common assumption is thd¥ances inthe knowledge of formal
linguistic systems will improve the performance of NLP systems.



The structure ofthe chapter is allows: My analysiswill focus on asub-field of
NLP, the fieldof MachineTranslation(MT). | will start with ageneralpresentation of the
field of MT, its goals and itsnain approaches anstrategiegsections9.1.0-9.1.3). will
then go on to present what are typically considered to be the main problems in MT from the
point of view ofthe systemdevelopersandhow these problems differ frorthe type of
problems associated with translation of novel blgsdstion 9.1.4). Irsection(9.2) | will
discussthe computation of semantic repentation ilNLP, and whethethe techniques
usedtoday arecapable of dealingvith novel linguistic blends. Section9.3 sums up the

analysis in this chapter.

9.1. Thefield of Machine Trandlation - background

9.1.0 The prospects of Machine Translation

People interesteth language and technology tendraact to the nion of Machine
Translation (MT) in a passionate manrMany are enthusiasti@bout theprospects of MT
in the future. This igparticularly evident icommercialcircles as well as in science fiction
literature. Inthe popular television series Star Trek the computer in thestar ship
(Enterprise) can translate anything from any language. Visitors from other advanced planets
have MTs installed in thelmeads.Fascination with MT isalso sharecamong prominent
figures in the computer industry. In a recent interview with Gordon Moore, the chairman of

the board alntel (Yediot,Jaruary 24,1997). Moore predicted that thenain advancements

(2) Artificial IntelligenceandKnowledgeRepresentation NLP technologymust rely onextensivedata-
bases of extra-linguistigeneral world-knowledgd-dowever, there is currently no reliatdad coherent
way for representing general world knowledge computatioriEtigrefore it isoften suggestethat when
the technologyfor representingknowledge incomputersimproves, so will theperformance of NLP
systems.
The analysidn this chaptersuggests thagvenadvancement irthese twdfields is not sufficient for high
performance ofNLP systems. Simulation dfiuman cognitiveskills (such asblending) is required in
addition.



in computer technologgt the beginning ofthe 21stcenturywould bespeech technology
and MT.Moore believes that in theewy near future we will bable to communicate with
our computersusing spokereverydaynaturallanguage, andonverse orthe phone in
different languages witsimultaneousomputationatranslation. In cotrast to enthusiastic
followers of MT, we also findmary who argue passionately that MiAas nofuture:
computers are so limited and translation is so complicated, that the idéw#lef automated
translation is impossible.

At the currentstage of MT research andevelopment, I|believe both extreme
approaches t&/IT are misguided. Ornthe one handthe goal of fullyautomated human
quality translatioris clearly far from our grasp, andhe discussion irthis chapterfurther
suggests that psentNLP techniquesare notpowerful enough tamitate the immense
flexibility and creativity of human languageocessing. Othe other had, MT companies
already provide customers withcomputational translation systems that perform
economically profable translation avarious levels of automationand quality34. The
relative success of commercial MT systems today is still a far cry tlieneghoria of the
1950s,when researcherseriouslythought thatthe machinevas going totake over the
territory of translationas a wholeb. What wesee instead today is a redefinition of the

original goals: inst&d of aiming atdevelopingfully-automatichigh quality MT (FAHQT),

3 The mostprominentexample of a successful M3ystem is SYSTRAN, a systeneveloped based on
work in the late 1950s and early 1960s at Georgetown University, which is still commercially active.

4 Experience with commercial applications of MT systems suggestetbihauality automatedranslation
can be useful in certain contexts. Melby (1995:36) discusses the most prominent examplegdtineieg
needs ofthe U.S. airforce, scientistsare expected tatudy relevaniscientific articleswritten in Russian.
Based on low-quality automateghnslation (MT), scientistsannow select amall subset of the Russian
articles for human translation.

5 None of the major basi@searciprojects on MTin the world so farhas attainedthe original goal of

developing ahigh quality fully automatedT system(for example, bothEurotra - the majorEuropean

effort in MT, andthe Japanes€&ifth GenerationComputerproject in whichMT was a primary segment,
ended without fully achieving their original goals).



current research efforts concentrate nmrehe goal oMachine-Assisted Translatipand
the development ofranslation tools (Melby, 1995:41). From acientific point of view,
Machine Translation still remains one of thest intriguing domainfr studyingcognition
and computation, andmimary testground forlinguisticsmodels.Rather thardismissing
the field scientifically(as some scholars dbgcause of its imerse complexity, |believe
that basic researcbhould bedirected auunderstanding where MT succeeds and where it

fails in comparison with the human mind.

9.1.1 General strategies in MT: a brief history

During its early years, machine translation researchivas viewed asprimarily an
engineering task: translatiomas compared to aryptographic code-breaking t&skrhe
success of cryptography in breaking the Nazi chdeng World War llencouraged a view
of MT as a feasible and attractive application of the new compadbknology.Advances in
linguistic theory and repeated failur@fsthe frst-generatiorsystems tachieve their stated
goals have united to discdét this attitude. Through the 1950s and into thefollowing
decade, machine translation has come tarmterstood as ampplication domain of formal

linguistics and computer sgice, what wouldater becomeknown asthe discipline of

6 A known citation from Védrren Weaver§1955) originalmemo forMT bestexemplifies thesimplistic
(engineeringyiew of translationandthe underestimation ofinguistic complexity. In Véaver'sview, the
linguistic content and structure of the translated text is exactly the same for all languages; emtydirey
system differs: "Whenlbok at anarticle in Russian, | say‘This is really written in English, but it has
been coded in some strange symbols. | will now proceed to decode”.

It is interesting to notéoweverthat many of V@aver's original suggestionshave gained renewed
popularity in a recent movement from rule-based MT towards statistical and corpus-based MT.n\&tedver
that in contrast to cryptography, language involves ambigmitytherefore it isxpected that a singhkord
in the source text may have several possible translations. However, Weaver noted, if a halfoaedsto
see the word or two preceding @ontlowing the translated wordt is often possible tofigure out what the
word meansand what its translationshould be.This basicidea is used instatistical MT today which
collects statistics on the translation of a word given its immediate context (preeediftdlowing word in
bigrams or trigrams). The basic problem of translatioweverstill remains with this method:i.e., that
translation of asentence isiot really atranslation ofits individual words, aswill be discussed inthis
chapter.



computational linguistics.

The syntax-oriented approach obmputationalinguistics was criticized when it was
demonstrated thditilly-automatedhigh-quality machinetranslation ispossible only when
somemeaningof the input text is taken into account. The firstititicize contemporary MT
research on thiground wasYehoshua Bar-Hillel (199, 1960), who(looking back)
focused onthe role ofcontextin lexical disambiguationof sentences. Hisow famous

example was:
(1) Little John was looking for his toy box. Finally he found it. The box was in the
pen. John was very happy.

The wordpenhas (at least)two meanings - a writing tool andaypen.Bar-Hillel's
point was that a lot of practical information about boxes and pens, their use amygptoaiir
size is needetbr deciding on the meéng and translation of theord penin example 1.
Bar-Hillel's criticism later led(in the 70’'s and80’s) to acknowledging thagjeneralworld
knowledgerepresentatiorand manipulation is an importariacet of machindranslation,
and Artificial Intelligence(Al) has been recognized as another field vafiich machine
translation can beonsidered an application. bpposition tothe Chomskyangenerative
linguistics view ofthetime that aimed atirawing aborderline between pureljnguistic
semantic knowledge and genenadrld knowledgeresearch in Aassumed thahere was
no such line and that a semantic theory of langoags includemetalinguisticknowledge.
The paradigmwvhich stronglyfollows this linetoday in MT researclks the onewhich has
come to beknown asknowledge-based machinetranslation- KBMT (e.g., Nirenburg et

al., 1992).

9.1.2 MT architectures
Traditionally, MT system architectureare divided betweeiransferbasedsystems,

andInterlinguasystems:



In transfer systems, aourcelanguage sentence fgst parsedinto a syntactic (or
syntactico-semantic) internal representation. Next, a transfer is made #teébtakical and
syntactic levels intocorresponding structures the targettanguage. Irthe third stage, a
completetranslation is generate@wo monolingual lexicons andne bilingual ditionary
are needed in dransfer system: aource-language andarget-languagelexicons,
specifying basic syntact and semantic attribies requiredfor morphologcal analysis,
parsing, and morpho-syntactigeneration of the target languaeg. part of speech,
conjugation forms, basic semantionstraints)and abilingual transfer dictionary (tailored
for a speific source-target languagmirs). Inbroad tems, the 'transfer'systemamay be
further dividedinto those based osyntactictransfer and those which go ‘further’ and
incorporatelexical-semanticanalysis tohelp resole ambiguities inthe source-language
representation. In the latteystemthere is acontinuousplay' between théweight' given
for the source text analysis (anddisambiguation) and that given tthe bilingual
components. In many casdack of sufficientanalysis anddisambiguation irthe source
text analysis can be 'covered up' by a sophisticated bilingual transfer dictionary.

In interlingual systemsthe sourcelanguage anthe targetanguage ardtheoretically)
never in direct contacBuch a systerhas twoclearly distinguished phasesirst, source
languageanalysis,which results in armrtificial unambiguoudormal representation of the
sentence (such as that of framefirst-order logic). The seconstage involveexpressing
the meaimg (represented byhe formal languagelsing the lexical units andsyntactic
constructions othe targetianguage.Interlingua projectdall into two classesthe early
syntactic approaches and those inspired dificial intelligence. Theformer approach,
which aimed at developing a universal syntastiacture based oBhomskyartheories of
transformationalgrammar, was abandoned. Thexpressivepower of the syntactic
representation was found to be insuffici@atitchins, 1986)The latte approachwhich is

based comiptely on Al techniques,makesuse of inference mechanismswhich apply



generalworld knowledge tothe source éxt analysis and represttion (see further
discussion in section 9.2.1). The-Badxd knowledge-basedhachinetranslation approach
mentioned in the previous section belongs to this class of interlingual systems.

While transfer MT systems proved to be mpracticaland on average producédtter
results(e.g., the most successful systeto-date is the transfdrasedsystemSYSTRAN,
the oldest commercially availableystem), interlingual MT systems provide several
theoreticaladvantages over mafer systems. First, irranslating from any one ofn
different languages to angf the remaining(n-1) languagesn(n-1) different transfer
moduleswould ordinarily berequired. But, if anntermediatelanguage is implemented,
transfer into each of thetarget languages would usely the "universal'language (formal
representation) as input; hence omigncoders from the source languages into the universal
meaning representation anddecoders fronthe universal maning representation into the
targetlanguagesvould berequired in a transfesystem,which would clearly be much
more economical.The interlingua concept isalso an important element in the
modularizatio of the translationprocess. Modul@&ation allows work to proceed
independently orachsub-task,and it is usuallyeasier to se¢he effect ofchanging or
adding a rule in a modularized system (since the effects are localized to one language).

As Nirenburg et al. (1992:30) observe,the major distinction today between the
interlingua-and transfer- basesl/stems is not so much the presence or absence of a
bilingual dictionary(direct contactoetweensource and tget language) but rather in the
attitude towards comprehensiveanalysis of meaning, othe depth of sourcelanguage
analysis. All rule-based M3ystems involve aeasure of linguistianalysis ofthe source
languagetext. The purpose dhe analysis is tdfacilitate thefinding of target language
correlates for the various meaning components expressed in the source language through its
lexical units, syntacticonstructions anevord and sentencerder. But while in “transfer”

systems, théransfer ofthe source éxt into the targt language proceeds directipm the



source text syntactic analysis stagejn interlingual systemssome level of semantic
represerdtion of thesource text isconstructed fromwhich the target text iggenerated.
Therefore, the debate between interlingual and traagigroaches to Mioday is infact a
debate on the role of meaningpresentation(in addition to linguistic syntactic
representation) irtranslation. Interlingua approaches view meaning representation as a
crucial step in the translation process.

It should benoted here that insingthe term”interlingual” in defining MT systems,
developers of knowledge-based MT systénasy do nohecessarilyassumehe existence
of (or the possibility of defining) acomplete“universal language”which can capture all
communicated semantmontent. Ratherthe aim ofknowledge-basedinterlingual” MT
systems is t@enerate “dunctionally completeepresentation omeaning” - a semantic
representation which is “(merely) sufficient toanslation to anumber oflanguagesrather
than sufficientfor total understanding,which entails amore complete,human-like
inferential process for understanding all implicit and explicit information” (Nirenbug.,
1992:27).

The analysis oflanguageprocessing in thistudy provides fuher support for the
interlingual knowledge-based approach to MTdmyphasizing th@éescapablaecessity of
generatingsome form ofindependent representat of (partial) semantic contenfor a
linguistic utterancéoefore translation intthe targefanguage caproceed.The analysis in
this dissertatiorparticularly supportsthe goal of achievingnly “functionally complete”
representation of the input text semantics, since a basic assumption in the analysis is that no
onesingle “meaning” exists for a linguistic structure kather intepretation can potentially
extend by associatiomets to theoretically infinte mental domains. For tmaslation
purposes, the “computation” of meaning representation of a source text needs to go only as
far as required by the grammatical constructions, lexicon, and entrenched blending schemas

of thetargetlanguage.



The analysis in this chaptehowever, difers from the conventional techniques
practiced in interlingual MBystemgoday in hat it emphasizeshe fundamental need for
extendinghe linguistic content of the sour@xt before translatiomto the targetanguage,
rather than (as often practiced in MT systejus)) representinghe linguistic content of the
input sentence in a language-independentnat. As the analysis inthis dissertation
suggestqfollowing other studies incognitive linguistics), languageexpressions do not
directly reflect objective events amsttuations in the worldbut rather linguisticallyexpress
partial agpecs of the communicategvent, which inturn tigger thereconstruction of
additional semantic contethirough cognitive operationsuch asmapping andolending.
Translation (as suggested irchapter 8) proceeds from these eaborated semantic

representationgrather than from the partial information provided in the input text.

9.1.2.1 Corpus-basefempiricistymethods

The MT methods describesb far areall rule-based(i.e., theymakeuse of arexplicit
set of structuredymbolic ruleso definethe linguistic clanges involved ithe translation
of a sourcesentence into anothéeinguage). Theule-basedsystemsare contrasted with
empiricist systems whichrecently gainednew popularity. In empiricist systems,
knowledgeacquisition andorocessing is based atatistical methodsrather thanlogical
rules.The hope is tat whateveknowledge isneededor the NLP systemwill be derived
by statistical examination of redéxts rather than being coded by human experts and
deduced by rulesThe assumption ishiat mwch linguisticknowledge isacquired andised

by statistical and pattern matching techniques on previous observations

7 Note that,from acognitive point of view, while the statisticdinguistics assumptior{that much of
linguistic knowledge isacquired by statistical generalizations ovepreviously heard instances)seems
extremely plausible for describing one’s own natargguage acquisitionthe assumptiomloesnot seem as
plausible when considerintanslation performanceSpeakerare not typically exposed tdarge streams of
discoursethat is simultaneouslyranslated(and from which translation examplescan be extracted and
generalized).



Empiricist MT systemsextract theknowledge requiredor translationfrom already
translatedexamples. Twdoasic methodsre distinguished (inneither case is there any
linguistic analysis in the traditional sense of the source text):

1. Example-Base@or Memory-Based) MT - A database examples (usuallyaligned
bilingual corpora of human translated text) is useprtmlucenew translationsby analogy.
This methodwas first suggestebly Nagao(1984). Inthe system presented in Sato and
Nagao(1990), the examples arstored as pairef dependency trees witbefinition of
correspondence links between the source and target nodes. In the process of translation, the
input is transformedhto a dependenciyee and matchedwith (sub)trees irthe database.
Using the correspondencdinks, taget dependency treeare createdand the target
equivalent is eventually generated.

An appealing feature of the example-based MT method, astkady(1994:70) note, is
that it can be integratedith a moreconventional (ruldased)approachfor instance, the
example database might benvoked for difficult constructions (using pre-defined
translations); in other cases a conventional transfer or interlingua approach could be used.

2. StochastioMIT (statistical model) in stochastic MTsystemsthe targesentence is
found by asearchfor a sentencewhich is the mostlikely translation of thesource(cf.
Brownet al, 1990, 1991). This viewaces back tanethods innformationtheory, which
definesinformation probabilistically: based orlarge corpora, probabiiies of words are
determined given the conteffireviouswords). Thebasicidea is toregardthe occurrence
of the target text as conditionbg the occurrencef the source textand to searclor best
target text. The algorithm calculates the probalilitthe source texgiven various possible
target texts, and aims at maximizitngs probability functionProbabilitiesare calculated in
advancegfrom large corpora)for the sourcelanguage and tget language independently
(i.e., the probability of a word in a sentence given the previous one awdvas), aswell

as for target wordgiven asourceword (calculatedform aligned translatedexts). The



searchalgorithm for the translationbegins with partial translations ofthe source text,
extending themword by word until there isa complete translation which is “more
promising” than any of the other previous candidates.

Corpus-basednethodsfor MT have gained aurprisinglevel of succesgrelatively to
what wasexpectedrom suchsystem$), but only few MT regarchergoday believe that
these corpus-basednethodswill superseddhe rule-based methodécf. Wilks, 1993;
Hutchins, 1995). As Kagt al. (1992:71) notecorpus-basedhethodsfail in dealing with
genuinelyambiguous inpufjust like traditional methodswould with no extra-contextual
considerations): in any given corpus contairsafficient occurrences of an examples with
several possible translationsthere will probably be somestatistical preference for
translating it one way or another. Howewbe statisticayl motivated choice will berong
a large percentage of thime. The reasorgs Kayet al. emphasize, is thahe information
telling us how to translate a given input sentence usually lies goiftextof its use,and it
is only by examiningfeatures ofthe context that we cafind the right translation.
Empiricist MTs may do better bysinglarger stretches of texwvith more context) as the
analogizing unit, but thenthe task of constructingthe analogizing databasgrows
unmanageabte

In contrastto the corpus-basedapproachesdiscussedabove whichgained some

8 Wilks (1993:5) cites aeported(but unpublished)DARPA-supervisedtest of the IBM MT system
CANDIDE (Brown et al, 1990, 1991) suggesting that the systeid well”, though not as well as the
rule-based system SYSTRAN. In another informal report the IBM group claims to get about 40-50% of the
translations right (but it is not clear how this number is calculated). It should be noted though that the IBM
system is notpurely statisticalanymore (i.e., it incorporatessome “rule-based” linguistic knowledge
structures, such as morphology tables, and some use of bilingual dictionary (Wilks, 1993).

9 Kay et al. (1994) summarize the state of empiricist MT research as follows: “the basic
problem with analogizing (empiricists, N.M.) approaches is not that they cannot be improved.
They clearly can. It is that improving the fidelity of the statistical or example model only
promises marginal improvement in the overall performance of a system. There will always be
significant problems that fall outside the system’s reach (due to non-local context problems,
N.M.)” (p.72).



success, noreal successfulconnectionistMT researchhas been reported sdar.
Connectionismhas up to nowbeen used in NLP mainly for parsing andlexical
disambiguation. In disambiguation by networks, the activation of a node by an input causes
the activation of thosether node# the network to whichthe first node is connected. An
ambiguousword activatesnodes corresponding tall possible senses. Ifthe correct
meaning was pre-activated by previoudigntified concepts, theorrectnodehas agreater
activation potential thanits ‘competitors’. In thisway, the wrong interpretation can be
eliminated (Cottrell, 1989). Thesame principlehas been used for syntactic analysis:
dependency constraints may be represesdeekcitatoryor inhibitory links betweennodes
(Waltz & Pollack 1985).Kay et al. (1994, p.79) conclude ashort discussion of
Connectionism and MBuggestingHhat “the greatestrealm of promisefor connectionist
processinglies in accountingfor preferences”such aspreferencesbetween different
parsing options of a sentence or readings of an ambiguous word (the choice$eaaneoe
in advance with some sort of connectionist weighting scheme)eKalyalso note that this
kind of associative weightingcan proceedin parallel with convenional linguistic
processing.

Somerecentpapers report ohybrid approaches to MT wherstatisticalmethods are
integrated with traditional Al methods to “fill knowledgapsuntil betterknowledge bases
or linguistic theories arrive{Knight et al, 1994, p.134; see also Chang &u, 1993).
Most researchers in the Mield believe thafuture MT systemswill be hybrid, “selecting
the best and moseffective aspectdrom both rule-based andorpus-basedmethods”

(Hutchins, 1995:xx; see also Wilks, 1993).

9.1.3 Linguistic problems in the development of MT systems
In this section, | briefly summarizeéhe main types of linguistic problems that

developers of MT systems have faced, as reported in the literature.



MT systems, as wasoted before, diffemainly in thedepth ofsource text analysis
they perform beforattempting to generate the targekt. An extreme example of MT
approach witlihe leastsource text analysis ibe “Direct Lexical TransferMT” approach.
Lexical Transfer systems attempt to take the minstt route from &entence in theource
language to its equivalent in the target language. That route is determined essentially by two
processesreplacementind adjustmentSuch a(minimal) systemmay consist of: (i) a
bilingual dictionary thatprovides potential replacementfor each word in the source
language (ii) rules for choosinghe correct replacementnd (iii) rules ofadjustment for
puttingwords inthe rightorder inthe targettanguageadding ordeletingwords where
necessary, etc.

In order to choosehe correctreplacementior eachword in the source language,
Lexical Transfer systems require, however, the extractisgrafcticinformationfrom the
sentence to redve lexical ambiguities. The following examples displaythe need for
linguistic contextual information (examples from Lehrberger and Bourbeau, 1989):

() Homographywhen a word belongs to more than one part of speech (this is very
common inEnglish as moshouns inEnglish alsofunction asverbs withno change in
morphology). In such casethe lexicalform itself may not beenough todefinethe right
translation. Information about the syntactic environment can help in choosing the right part-
of-speech.

(i) Complexconstituentswhenthe translationrcan be obtainednly for a whole

sequence ofexical items and not by translatinggach word separately. This isvery

common, for example, when translating verb and post-particles, as in 2:

(2) English French
pick up ramasser
shake up agiter

Entering thewhole sequencée.g., ‘pick up’) as asingleentry to the transfemules in

the systemwill not solve the problemsince theconstituents ofthe sequencemay be



separated from each other in the sentence (but still translated as one unit), as in 3b:

(3) English French
(a) John picked up the coin. John ramassa la piece.
(b) John picked the coin up. John ramassa la piece.

Just searchingfor the different component§.e., pick and up) distributed in the
sentence is nanough eithersincethe components may in fabelong to different sub-

clauses, as in 4 below:
4) English: He picked a fight with the guy up the street.

French : Il en vint aux coups avec le gars de 'autre bout de la rue.
It is only throughsyntactic analysisf the whole sentence that complex constituents can
be identified as a single unit for translation.
Syntacticanalysis is required nainly to identify the “basicunits” for translation, but
also to decide on the particulaterpretation (and hendeanslation) ofword sequences, as

in exampleg5-6) below. In 5-6the semantiproperties othe syntactic object define the

translation:
(5) English: She turned on the light.
French: Elle a allume la lumiere.
(6) English: She turned on the gas.

French: Elle a ouvert le gaz.

An additional problem thabccurs inlexical transfer systems (withno syntactic
analysis) is a prdem of duplication of ransfer rules: ifthe contextualconstraints are
defined in term®f the actual positions ofthe elements in theentence, thethe system
developermust, for &ample, state twiceeachtranslation constrainfor a verband its
arguments once for ttestiveform and once for thpassiveform.

Probably inall rule-basedMT systemsoday (but nb corpus-basedystems) the first
stage of translations sourcetext syntacticanalysis -the determination (angbossible
“regularization”) ofthe sentencstructure.This stagewas also historically thefirst to be

developed by computational linguists.



Syntactic analysis, however, involves additional problemdisgimbiguationTo solve
syntactic ambiguities, MT system developerakeuse oflexical-semantigroperties (also
referred to aselectionalrestrictiong. Considerthe following example(from Grishman,

1986):

(6) I noticed a man on the road wearing a hat.

Sentence 6has two syntacticanalyses andcorrespondingly two semantic
representations (one with the man wearing the hat and the other with the road wearing it). If
we can determine thathe road is wearinghe hat' ismeaningless, wean excludehat
reading and home ion the other.This is done bycoding (in advance) d&'selectional
restriction” on the predicatevear that its agentmust be human (note that sdiecal
restrictions,while helping inrestricting thenumber of gntactic analyses for annput
sentence, also prevent the system from acceptetigphoricalutterances).

For the purpose of MTmany syntacti@ambiguities need ndie resolvedecausdhey
canbepresredin thetarge text aswell. Corsider the following example 7. The example
involves gntactic (and emantic)ambiguity in English (regardinghe attachment of the
prepositional phrase). The prepositional ambiguity can bepreserved inthe French
translation because both prepositiomaaningsthe “possession’meaningattached to the
'woman’ (‘fawoman wth..’) and the “nstrumental” meaningttached to the verlfsee
with...”) can be rendered by tlsamepreposition inthe same syntactic location in English

and French.
(7) English: I saw a woman on the hill with a telescope.

French: J’ai vu une femme sur la colline avec un telescope.
However, if sentence 7 tsanslated intdRussian, for exampléhe ambiguitymust be
resolved since Russian expressashprepositional meang differently (Nirenburget al.,

1992:27) .

Few MT systems deal with source text analysis problems beyond syntactic analysis and



the use of selectional restrictions for disambiguation. Nirendiuagy (1992:21-2% discuss
additionalproblems insourcetext analysis whichinfluencethe quality of thetranslation.
These problems gbeyond syntaat disambiguation andttachment of lexical-semantic
properties tosyntactic elementsand intothe realm ofwhat is traditionally considered
“pragmatic” information:

(i) Anaphoraresolution Pronouns like ‘it’ in Englisfare translatediifferently (in many

languagesyvhen theyrefer to amale or afemale. An MTsystemtherefore musassign a
particular reference to pronouns in order to choose their correct translation.

(i) Ellipsis: it is very often the cadhat elliptical fragmentsnust be traslated in full in
the target language (and hence must be recovered in the source text).

(i) Metaphorand metonymyunderstandingNirenburget al. (1992) refer towork by

Lakoff and colleagues demonstrating that metaphors are not reserved for poetic texts but are
prevalent in everyday language. Nirenbet@l. note that an MT system mustow (p.25)
"whether the systems ofmetaphoricalcomparisonsamong languagesre similar and
whether they can be &nslded directly” (see alsodiscussion in action 8.4.6 of this

dissertation).

Problems intranslation alsarise from“mismatches’between thesource andarget
language lexicongsee section 8.4). For exanple,the verbrun in English can beused
with differentsubjects taexpresdifferent extensions othe prototypesense of ‘run’.In
other languages, each sense will be transtiitéstently (i.e., te equivalenof ‘run’ in the
target language may not be extended in a simiay as in English).The following

examples are from Larosn (1984:7):

(8) English Spanish
The boy runs El nino corre (runs)
The motor runs El motor funciona (functions)
The clock runs El reloj anda (walks)

His nose runs Su narriz chorrea (drips)



The problem for the MT system developgrof course, iefining inadvance a list of
all possible uses dheword ‘run’ and itsvarious translationsand identifying the right
context for each translation. The experience showtita a list iconstructed, aew use
comes up which requires amgetely different translation. Thisis becausepeople
creatively extend the meaning of words all the time, aiscbit course a degproblem for a
computer to recognizeuch novel extensions,and evenworse, totranslate them (see
further discussion in this chapter).

The deepest problerfor MT occurs wherthe translatiormust take into account the
general contexbeyond the linguistic texti-e., the situation inwhich the textwas uttered,
the intended audience and the cultivielby (1995) givesas anexample thdranslation of
the English expressionthank youinto JapaneseThere areseveral translationand they
depend on factors such as whettierpersonbeing thankedvas obligated to perform the
service anchow much effortwas involved.Evenfor a human flon-Japanese), iakes
substantial effort tdearn theselistinctions. For a computer, it ismpossible tolearn.
Nagao (1989kimilarly discusseshe many words ofespect and politeness dapanese
which reflect the socialposition of the speakers, butre hardly used in European
languagesEvenwhen these factorare not explicitlyexpressed irthe sourceEuropean
languagethey mustbe inferablefrom the contek andfrom the psychologicalktate of the
speaker, when translated into Japanese.

In the comingsections, Iwill discussthe problenof translating instances dEnglish

Caused-Motion sentences (analyzed in chapteuit8)n rule-based MTsystems Note that

the translation of the English caused-motion sentences in chapter 8 does not pose any of the

classical translation problems discussed above: the sentences are simple to parse and do not

involve syntacticambiguity (ofcourse, ifthe system doesot recognize the existence of a
Caused-Motion syntacticonstruction, as suggested Boldberg, 1995, thermparsing

difficulties will arise when the systemencounter intransitiveverbs such assneeze’ or



‘laugh’ occurring with adirect object. Havever, this problemcan be easily fixed by
encoding a special rule in tilsgstem todeal with this construction.Once such arule is
encodedthe parsing ofthe examples is quitstraightforward.). Theranslation of the
English Caused-motion exampleschapter8 also does notinvolve lexical ambiguity of
individual lexical items (for exanple, in the sentencé&rank sneezed theapkin off the
table the informationassociated witleach lexical itemn the sentence, ands translation,
is thedefaultone. That is ‘sneeze’ referstlte defaultact of ‘'sneezing’,'napkin’ refers to
a prototypical napkin, and soon...). Finally, the translation ofEnglish caused-motion
sentences intélebrew or Frenchs not afunction of cultural differences: most of the
translation examplesliscussed inchapter 8 communicateeveryday events which are
culture-independent.

The problem of translating the English caused-motion sentences analyzed in chapter 8 is
rather the outcome of thereative linguistic combination(or blending of conventional
lexical items and syntactic formsThe problem posed tothe (computationalfranslator
results first ofall from the need toreconstructthe novel (creative) linguistic blend
performed bythe spaker. Furthermorehe translatomeeds to infeadditionalknowledge
necessary for translation but not providedheasourcetext (or in its largertextual context
for that matter).And finally, the translatormust blendagain the constructedcomplex
semantic structure into a basic clause constructitme target languadeather thardirectly
transferringlinguistic units fromthe source éxt into correspondingexpressions in the
target language). Inthe next section, | will discussthe extent towhich current

methodologies of MT can deal with these type of cognitive-linguistic operations.

9.2 Implications of grammatical blending for semantic analysis in
rule-based M T

In this section, | proceed to the caliscussion of the chaptehe useand manipulation



of encodedworld knowledge structures fosemanticanalysis andtranslation in MT
systems. Iwill suggest thaturrent prevalentnethods inNLP for manipulatingworld-
knowledge andemanticstructuresare not equipped to dewlith linguistic blends of the
type presented in thidissertation. Iwill start by discussingapproaches teemantic

representation in rule-based MT systems.

9.2.1 Meaning representation in NLP

Katz & Fodor (1963)nitiated atradition in Linguistics, Philosophy,andlater in Al of
semanticsas manipulation ofsemantic markersittached to lexicaltems. This semantic
theory posited binary mieers (suchas, +/- human,male, animgl tha would be used to
build thepossible sensesf everyword. Todecide the maning of anyword in a given
sentence, a postulatbady ofrules woulddescribehow these markers could permissibly
interact innon-anomalousentencesSemantic markers combineudth syngctic markers
and rulesof combinationwould provide us withthe meaning of @entence. Though this
approach has been frequently attacked, it is still irdhyential in theAI/NLP community;
Being able toimplement semanticgsing alimited number of markers isomputationally
very attractive.

The initial idea of binary markers was expandegltts aml frames(Minsky, 1975) in
the Atrtificial Intelligence(Al) community. Instead of simply passsing a markereach
lexical entity could contaislots in which were foundither avalue, a paiter to a default
value, ora procedurethat suppliesthe missing value. Hayes (1985) suggested fiaahe
representations could be seen as a new syntax for first-ordertlagitame isa bundle of
properties whichare instantiated irparticular individuals andsituations. Each frame
instancedenoteshe individual andeachslot denotes aelation which may hold between
that individual and some other individuals. Ratihain storing assertions a clausaform,

they can now be stored in frames.



Schank (1975, 1977) combined the slots and frames idea with the linguistic tradition of
case grammars (Fillmore, 1968) in what he cadiaceptual DependenciéSD). In the CD
semantic representation, verbs are described by semantic primitivesgesier (physical
or mental), move, speak, byildCaseelationswith different nouns(that could be agents,
patients, instrument$pcatives, and so orgre markedor the verbalprimitives. The CD
representations wenesed to choosaord sensesand represenscripts or stereotypical
sequences of actis (Schank &Abelson, 1977P. The text analysiswas donemainly by
filling up CD structures.

In Schank’s theory a predeterradhset of possible relatiorigonceptuatules) is used
to predict conceptual itemsmplicit in a sentence.The language analyzdtconceptual
analyzer') makes use skeletal semantistructures tgyuidethe analysis.These skeletons
specify the primitive actions and the type of object®lved, and have placesor filling in
specific instances of objectmvolved in a particularevent. NLP systemsleveloped by
Schankwere based osemantic-driveranalysis In opposition tothe linguistic approach,
wherethere arédwo lewels of representation - swutic and semantic -and constraints on
acceptable structures at each le8ehank suggested thahceour ultimate objective is the
generation of a semantic repeatation of thesentence, we should do doectly, and use
semanticconstraints t@uidethe process. Schank'systemanalyzeghe text directly into
semantic structures, call€@bnceptual Dependenayetworks.

The strongest argument of thasdvocating senmdics-drivensyntax analysikiasbeen
the ability of people to interpret sentences from semantic clues in the face of syantactic

or missinginformation (as inhe go movies yesterdayThe early analyzers developed by

10 The scripts are frame-like structures forrepresentingypical or expected sequences efients. Awell
known example of a script is the RESTAURANT script, whilghailsthe sequence oéventsand expected
behaviors when going to a restaurant (i.e., entering, lzsgatpd at &able, being shown a menardering
from a waiter, etc.).



Schank and his studenitegin byidentifying the 'main noun'and 'main verb' of the
sentence and building an imaplete semanticstructure. Thesentence is then searched for
words of the proper class to complete this structure. This approach should therefole be
to handleungrammaticakentencesvhich would cause a syntdact analyzer tofail. The
semantic-driven analysis, however, also hashydifficulties: Fist, the merging of syntax
and semanticenade it difficultto capture syntactigeneralizationssuch aghe relation of
active and passive formsSecond, analyzing complex sentencesyticularly those
involving conjunctions and comparatives, witts@mantic analyzer is me complicated
without some syntdic guidance. Finallythe identificatbn of semantic primitives for
semantics-driversystems isextremely problematiand it is notknown whether such
systemscan remain stablevith large vocabularies containing severtdousandlexical
entrieg? .

Today, almostall MT systemsstart theirprocessing ofnput sentences witByntactic
analysi$2. Semantigroperties andrame-like “world-knowledge” structuresre typically
used toguide the symictic parsing processnainly, and(in somesystems)also tobuild
somelevel of semantic repsentationfor input texts. Thecentral debatéoday is between
thoselinking semanticinformation directly to lexical items and thosewho advocate a
distinction betweerwhat is considered to bknguistic knowledge (associated with the

lexical items in eacHanguage), anextra-linguistic (“common-sense’jvorld knowledge

11 Many linguists and philosophers haagued that thexistenceof a set of truly universalprimitives is
unlikely. The problem isdecidingwhich conceptsare the “primitive” ones,if any exists at all(for a
discussion of some of the arguments for and against semantic primitives, see Y. Wilks, 1987).

12 Many models ofsyntactic formalismsiave beerexplored inNLP researchincluding Transformational
Generative Grammar, Categorial Grammar, Lexical-Functional Granaméiead-DrivenPhraseStructure
Grammar.



which is defined independently of any languag&he latter type oknowledge (conmon-

senselanguage-independerknowledge) isoften referred to inthe MT literature as
ontologicalknowledge(cf. Carbonell, 1978; Wilks, 1979; Nirenbueg al, 1992,1995;

Dorr, 1993).

Schank’s basic idea of frame-based semanticglays an important role in the
computational repeentation of ontologicaknowledge. The ontology first provides “a
uniform definition of basic semanticcategories, suchs objects, event-types, relations,
properties,and episodes that t@me thebuilding blocks for descriptions of pécular
domains” (Nirenburget al, 1992:69). These categories ased to define “what ‘concepts’
exist in the world and how they relate to each other” (Mahesh, 1996rbsomesystems,
event-typedefinitionsarealso usedto encodepast experiences, botctually perceived
and reported” (Nirenburgt al, 1992:71), in the form a#pisodegunits of knowledgehat
encapsulate particular ‘remembered’ instances of events and dbjetitsa (“knowledge-
based”) MT sywem, the ontologicaknowledge isused toguide all levels of “linguistic”

procesing: lexida syntactic, semantic, angragmatic processing of both sourcext

13 Nirenburget al. (1992), the developeds the Mikrokosmosknowledge-based MProject, notehowever
that while proposals about the content lekical semanticproperties generallyavoid the concept of
languageseutral knowledge ,they neverthelessintroduce elements of metalinguistiapparatugin their
proposals] which play the same role as ontology [i.e., general world knowledge]” (p.7).

14 Mahesh (1996)describes insome detail the construction ofan ontology for the Mikrokosmos
knowledge-based MBystemdeveloped athe NMSU ComputeResearchLaboratory. Theontology of
Mikrokosmos is adirectedgraphwherethe nodes arghe “concepts”(heremarked in capital letters). The
“concept” is the ‘primitive’ computational symbol with welkfinedattributesandrelationships withother
concepts. Linksdetween nodeare represented aots andfillers. Slot names themselvesre concepts of
the classPROPERTY. PROPERTYsre oftwo types:RELATIONs and ATTRIBUTES. RELATIONSs
map an OBJECT or EVENT tanother OBJECr EVENT while ATTRIBUTEs map anOBJECT or an
EVENT to a scalar or literal symbol. The ‘slot’ is thexdamental'meta-ontological’predicate. Eaclklot
has several “facets”: range of values (fillers), default value, salience in the entire concept, and more.

15 The ontologyandepisodesare somatimes discussed aswo different types of memory: semantic and
episodic. For convenience, | will refer to the encoding of both typkeafledge bythe term“background
world-knowledge” or “ontology”.



analysis and target text generation (Nirenkairgl, 1992}5.

Representing and manipulatingtologies is onef the outstanding researajuestions
of the entie discipline ofAl. Leaving aside the problem etale and costhe concept of
ontology in Al hasbeencriticized on theground ofirreproducibility (based orthe claim
that no two peoplewould beable to agree omwhat anyparticularnode or pathin the
ontology hierarhical structureshouldlook like), and onthe basis ofcultural-dependency
(i.e., that theway anontology is built necessarily reflectshe world-view behind one
dominantlanguage). As Nirenburl992:70)notes,“Even todg, this area of scientific
research [constructing ontologies] rensato a largedegree, as it halseen over2,500
years, within the purview of philosophy’

My interest in this chapter, however, is not inthe feasibility of constructing
computationalontologies. Rather, A&ssume fothe moment that a completatology is
available insome form tahe language-processin@omputational)agent. The question |

will ponder inthe next sectioris the following: given a computationalsystem which

16 Mahesh (1996:41nentionshoweverthat the Mikrokosmos ontologgonceptsare used to “represent
linguistic meaningratherthan to makeelaborate inferences carry out nonlinguistic action”. Based on

this distinction, the Mikrokosmos ontologgoes not include “prototypical episodic and procedural

knowledge”.

The translation examples discussed in this thesis suggestpisatiicand procedurainformationis an
integral part oftranslation. The analysis in this thesisdothers(e.g., Nunberg, 1995) suggest that no
clear border line can beput between “lexicalsemantic” knowledge and general (encyclopedic) world
knowledge. | will return to this point later in the discussion.

17 An important questionregardingthe representation ofvorld knowledge iswhat type of information
should be stored-or example findings in studieson spatial prepositionand their representatior{e.g.
Herskovits, 1982Vandeloise,1991) point to thdact that world knowledge-baseshould not necessarily
reflect a “valid” or “logical” view of the real world. Rather they should representthe prototypical
conceptualization ofthe world,as reflected inthe way people speak. Herskovits (1982) wheestigated
English spatial expressions found out that “our words afestribemental maps, whiclare made ofines
and points approximating threanonicalview of the world” (p.64). According to Lakoff (1982) thecentral
aspect of our language is experiential: mental imagery, memory, and gestalt perceptiave &i dowith
“human interaction with and functioning in the world, rather than with objective properties of the world” (p.
22). It is probablythis experientialinformation that has to beoded as‘common-sense”knowledge(see
also Mandelblit, 1992, on the translation of spatial prepositions).

Note howeverthat forthe purposes of constructing an Nkfpstem, thepsychologicalreality of the
ontology, or itscorrespondence toental structures in théhuman mind is not of interegfor NLP
purposes, the ontology is just a working tool to provide better performance).



represents knowledgaboutthe world in some fom, how would the systemmanipulate
this information to construct the representationaktructures required for language

processing (and, in particular, translation)?

9.2.2 Manipulation of general knowledge structures for constructing
semantic representation of texts
Nirenburg et al. (1992:73) describethe role of theontology in the process of

constructing a semantic representation for inputexts

18 This quotation refers only to the representatiort@ittial (T) meaning(or semantics)Nirenburget al.
also discuss intheir manuscript theepresentation ofhe speaker’sgoals (G) and the setting (S) of the
communicatiorsituation agpart of the text's meaning. The text meaning istrfad SM = {T, G, S}
(1992:75).



During analysis, ontological structures are instantiated in
wor ki ng nenory that capture the actual know edge necessary
to “understand” a text or to produce a text or a turn in a
di al ogue. W believe there is a well-defined set of
know edge el ements whose existence constitutes a necessary
and sufficient condition for a text to be considered
understood... Basically, we represent the semantic content
of natural |anguage utterances by instantiating ontol ogical
entities or reasserting renenbered instances of such
entities that are found...to be the nost cl osely
semantically related to lexical units in the input.

How are linguisticand ontological strucutres manipulated toconstruct semantic
representation of texts? Looking at the general NLP literature, we find that rule-based NLP
(and Al in general) basidglstudies only oneype of knowledgemanipulation:reasoning
from general knowledge to specific cases, or what is generally referreddmamnsense
reasoning The discussion is confingd restricted circumstanc@gerelogical inferencing
can take place; i.e. reasoning that involves prenaisédsonclusions, and is based on laws
of logic. Understanding a sentence, in this viewinding a way tamake it true.Semantic
representations are assigned to the partgnfem sentence, sibhat given the ontology (or
mode), one can tell whether the sentence is true in that model. The paradigm cases used for
inferencing areleduction, inductiorandabductior®.

Note thatthere is an important implicassumption underlyinghe logical reasoning
manipulation of knowledge employed in Nkfstems: the assumptitimat theres a set of
rules andworld-knowledgeframes hat if comprehensiveenoughcan predictand give a
model to all future languagegeneration andunderstandingvia processes ofiogical
inferencing. In other words, the assumption is thatmental’ structures thaepresent the

interpretation of any texdither exist as such in the system in advanceaorbederived by

19 Kay et al.( 1994) describe these three forms of inferencingddduction,from (vX)p(x)-> g(x)andp(A),
one concludeg(A), In induction, fronp(A) andq(A), or morelikely, from a number of instances p{A)
andq(A), one concludeé/A)p(x)-> q(x) Abduction isthe third possibility. From(vX)p(x)-> q(x) and g(A),
one concludep(A). That is,q(A) is seen as observable evidence, wiieékp(x)-> q(x)is a general principle
that explaing|(A)'s occurrence, ang(A) is the inferred underlying cause or explanatioq ().



logical inference rules from other structures in the system

The point | would like to make in this section &t thebasic mechanismsf semantic
processing discussed above - i.e., the construstisamantic representatiaf input texts
by directly instantiatingthe semantics of the linguiststructuresn ontologicalframes (or
their logical derivations) cannot suppalitforms of languag@rocessing. Irparticular, the
semantic content of linguistic utterancegh aghe "blends” discussed ithis dissertation
is not prototypically a direcinstantiation of anyindividual ontologicalstructure (or its
logical derivation), butrather an“instantiation” of partial information from several
independent ontologicaktructures linked (or integrated) together by unpredictable
analogicalmappings. Irthe nextsection, Iwill discuss as aaxample theconstruction of

semantic representation for English Caused-Motion sentences.

9.2.3 Constructing semantic representation from ontological frames for
English Caused-Motion Sentences.

Consider the following input text to an NLP system:
9) The audience laughed the actor off the stage.

In chapter 2, the linguisti@and conceptualblending processes underlying in the
generation of sentence 9 watiscussed (Followingrauconnier & Turne 1996): various
linguistic structures(lexical forms and grammaticalconstructions whichconventionally
represent events and relationshia world)are integrateénd form atemporarystructure -
the ‘blend20, The ‘blend’ is reflected in the actugterance in the languagad is thanput
for an NLPsystem to analyze. Given amput textsuch a9, from the point ofview of
NLP systemdevelopersthe question is: whiclontologicalknowledge frameseed to be

encoded in the system in advance hod/ thesestructuresare to be retrieved tprovide a

20 By ‘temporary’, |refer tothe fact that the linguisticblend is often createdfor the purpose obnly one
text or even one sentence.



correct semantic model for sentence 97?

Note that in NLP systems the semantic representation of claugp&aly constructed
as a representation pfedicates and theiargumentgcorresponding téhe sentencemain
verb and nominal phrases). Semantic analyzers typically bggitentifying the main verb
of the sentence and retrieg an ontological frame thaépresentshe “semantic predicate”
associated witlthe verb (theontologicalframesare linked toverbs inthe lexicon). In the
ontological frame, “case relations” (agergatients, instrument$ocatives, and so on) are
marked for thepredicate. Tie semantigprocessing othe sentencenvolvesthe attachment
(or "linking™) of nominal andadverbial components in the sentence to the “case relations”
slots inthe ontologicaframe.In discussing possiblentological frames to represent the
semantics of input sentencestiis section | will thereforefocus onontologicalframes to
be retrieved by the sentences’ main verbs (e.g., thdéatggbin example 9).

One optionfor constructing asemantic re@sentatiorfor input sentence ®ased on
ontological frames is tohave in theontology a sintg frame which representsa single
conceptual predicate meaning “cause to move by laughtewo(lld term this frame
LAUGH-CM). Note that this is anacceptable option if we base tkenstruction of the
ontology and its links tdhe on-line English lexicon on conventional (paper) English
dictionaries.The Webster ninthCollegiate Dictionary, for exampé, defines one of the
senses othe English verb ‘laugh’ (in its transitiveise) as‘to influence or move by a
laughter”. The frame LAUGH-CM would then includeseveralslots forthe variousnominal
participants (“case relations”) associated with the predicaggemt, a movig patient, and
a source/goalocation. Linking ruleswould attach thdinguistic nominalarguments of the
verblaughin the input sentenc® to participantslots inthe ontological framdi.e., the
subjectwould belinked to the agenglot, the object to the patient or therabot, and so

on...). Theframe representatiofor LAUGH-CM would look something like Figure 9-1



below 2. Each filler may itself be an ontological frame or a ‘literal’ value (numerical or

alphabetical). In brackets are the "fillers" for the frameGH-CM for input sentence 9.

LAUGH-CM _ Def: “A move P (from S to G) by laughter ”
Agent (A): (audience)
Patient (P): (actor)

Source (S): (stage)
Goal (G):
Figure 9-1: A frame-type representation for the predicatesH-CMm.

Note that the frame in Figure 9-1 represents, in faabnaeptualintegrationof the sort
argued for in chapter 2. That issequencef everts in the realworld (i.e., Agentlaughs,
Patientmoves) isdefined as &ingle integrated ontologicatoncept. Thestructure of the
frame (i.e., the case relations associated with the predicate, and the majgpargroétical
roles to semantic case relations) is the same as the ones for caused-motion soclcegs
THROW or PUSH (the concepts associated with the English lexical itbnasv andpush).

The problem with this approads, of course, that itannot accounfor creative non-
entrenchednstances othe English Caused-Motion constructig¢ne., creativelinguistic
integration of conceived caused-motionevent sequencesinto a snhgle linguistic

construction), as in 10:
(10)  Frank sneezed the napkin off the table.

Clearly, we cannot expect an ontology inNioP system (howevetich anddetailed it
is) to includea singleframe representatiofor the integratedcaused-motion semantics of
sentence 10 (i.e., flamewhich represents a gulicatewith the semantics of “to move by
sneeziny. If we do, then wemust definein the ontology asecondframefor everynon-

stative verbV in English,with the semantics of “to influence or move B (since each

21 The representatiorformat in Figure 9-1 is a simplificatiorof figures suchas the onedound in
Nirenburg et al. (1992) or Mahesh(1996). Their format is based onthe FRAMEKIT knowledge
representation system (Carbonell and Joseph, 1985).



non-stative verb in Englisban potentially be integrated into a CM stattic structure to
represent a caused-motion event sequence, as the study by Goldberg, 1995, suggests).
Another optionwould be toconstruct a ragsentation of theemantics of sentences 9
or 10 asinstantiations of a morgeneric frame in thentology, representinghe generic
eventstructure ofCAUSED-MOTION (i.e., aframe representing @enericrecurringevent
sequence ithe world of ‘an Agent actingand thereby causing Patient tomove'). The
event that the frameepresentsvould beassociated witlthe same “case relations” as the
frame LAUGH-CM (Figure 9-1), but it would include anadditional slot identifying the
particular type of activitynvolved in eachinstantiation of the framée.g., ‘laughing’ vs.

‘sneezing’ in 9-10).Figure 9-2 provides achematidllustration of the frameCAUSED-

MOTIONZZ;
CAUSED-MOTION __Def: “A causes P to move by means of act Ac”
Act (Ac): (laugh | sneeze)
Agent (A): (audience | he)
Patient (P): (actor | napkin)
Source (S): (stage | table)
Goal (G):

Figure 9-2: A frame-type representatiorceflUSED-MOTION events.

Note that the grammatical linguistic encodingaafaused-motiorevent inEnglish (in a
single clausestructure with a sirlg verb)cognitively motivateghe represatation of this
category of events amn independenantological framg"concept"”),ratherthan, say, as a
complex combination ofeveral frames representitite differentsub-events irthe macro

caused-motiorevent).Note alsothat from a pragmatic computationgdoint of view, the

22 The semantiaepresentation othe concept“caused-motion” inFigure 9-2) isclearly partial. For
example, as th€aused-Motionsyntactic construction irEnglish reveals, thedirection of motion (up,
down, into...) is a salientaspect ofthe caused-motiorevent (in languageand probably in conceptual
perception asvell), andshouldtherefore be aimtegral part ofthe sermantic/conceptuatepresentation of
caused-motion events in the ontology.



latter representational option (Figure 9-2) is medfieient than thesarlier one(Figure 9-1).
That is,rather tharconstructing (inthe ontology) twoframesfor eachnon-stative verb in
English such akughor sneeze- one for the causativaense and orfer the non-causative
‘basic’ sense of the verb the causativesensecan bederivedfrom the framerepresenting
the non-causativesense plushe generic frame afAUSED-MOTION. In andyzing English
sentencesthe CAUSED-MOTION frame (Figure 9-2)will be triggered by thesyntactic
pattern of theEnglish inputsentencgNP V NP directional-PP],and the mairverb will
identify the particulaftype’ of activity involved inthe generic evergtructure of caused-
motion.

The problem, however, is that for the purpose of translation, for exatgleemantic
representation oEnglish Caused-Motion sentencesaas instantiation othe ontological
frame in Figured-2 is insufficient(i.e., is not‘functionally complete”). Asthe discussion
of English CM sentences (ithapter 2) and their translation inttebrewand French (in
chapter 8) suggests, the main vertth@English Caused-Motion construction (represented
by the generic ‘activity’slot in the frame inFigure 9-2)may refer todifferent sub-events
within the conceivedtaused-motiommacro-event, and which sub-evehe verbrefers to
definesthe translation strategyinto the target languadgee., the choice of the integrating
syntactic construction and lexical items in the tatgeguage, sediscussion irchapter 8).
Moreover, as the analysis in chapter 8 suggests, what the main vkeeEimglish caused-
motion sentence refers to also defines what essential informatissisgfrom the source
sentence linguististructure,information hat is esentialfor successful translation. For
example, ifthe verb inthe caused-motion sentence d#p thecausingsub-event, as is
often the case in English, then for translation purposes into Hebrewranch, as well as
into many othedanguagesthe effectedmotion eventmust beinferred, since thislatter
aspect of the event is tbee most commonliighlighted bythe constructions ofhe target

languages (see section 8.4.1).



Therefore, forthe purpose oftranslationthe “interlingual” semantic repsentation of
English Caused-Motion sentenaasist first beextendedo distinguishbetween(at least)
three possible predications the main verb enEhglish causkmotion sergnce maydenote
(i.e., the agnt’'s action,the patient'smotion, orthe causal linkbetween the twas).
Second, forcorrect translation o€M sentences intétdebrew and French,the particular
typeof effected motion event must typically be represented as well. Figure 9-3 depicts what
would be a“sufficiently complete” representatiorof the semantics of sentence 10 for
translation purposes into Hebrewwd French{below, isthe translation osentence 10 into
Hebrew, as discussed in section 8.4.1):

(10) English:  Frank sneezed the napkin off the table.

Hebrew: Frank hepil(n.f.l-hif’il) et hamapit min hashulchan behitatsho.
Frank fall-hif'ilpa5p ACC the-napkin off the-table by-sneezing.

CAUSED-MOTION(extended) Def: “AG causes(C) PA to move(M) by means of (AC)"

Predicate:

Causing Activity (AC): (sneeze)

Effected Motion (M) (fall)
Causal Link (C):
Agent (AG): (Frank)
Patient (PA): (napkin)
Source (S): (table)

Figure 9-3: A (partial) frame semantic representation of the serftesutle sneezed
the napkin off the table

The problem for computationalprocessing is thathe construction ofthe frame
representatio as in Figured-3 cannot bederivedfrom other ontological framesn the

system by logical inferencing only (i.e., by operations ofinduction, deduction, or

23 The mainverb in the Caused-motiorconstruction may alsaenote other aspectof the event, as
exemplified in Goldberg, 1995, Fauconnier & Tuner, 1996. and in section 8.3.4.5 in this dissertation.



abduction).

First, the frame representation Higure 9-3 cannot bederived fromthe generic
CAUSED-MOTION frame (Figure 9-2)because thgrammar inEnglish underspecifies the
correct mapping rule between teentence’s @in verb andthe three (minimal) optional
“predication” slots in Figure 923 Second, the missing informatigtme manner of motion
of the affected patient) cannot be derived from any single ontological frame (associated with
individual lexical items in the sentence) suclsBEEZE NAPKIN, or TABLE. Nothing in the
properties ofthe conceptsneeze’ or‘napkin’ alone suggests that in aaused-motion
sequence, the effect of sneezing on a patient would necessarily be faflengf (as in the
represerdtion in Figure 9-3), rather than, say,‘shifting aside’, or ‘running away’.
Consider for example CM sentence 11, with the same mairsnedze

(11) Eng: Frank sneezed everyone out of the room.

The effected motion evemltssociated witlsentence 11 iprobably not one ofalling’
but rather of volitional'walking’ or ‘running ou’, asreflected inthe translatiorbelow of
sentence 11 into Hebrew (provided by two Hebrew speakers):

(11a) Heb: Frank hivriax(b.r.x-hif’il) et kulam min haxeder bahit'atshuyot shelo.
Frank run away-hif’inaSt ACC everyone from the-room by-his-
sneezing T 0 infer the effected type of motion eteim 100r 11 the languageser musinfer

a probable causal link between the agent’s action (‘sneeaingdhe motion othe patient.

24 Note that the semantic properties of the main verb in Englisised-motion sentences azften cuethe
system as to whichspect ofthe eventhe verbdepicts(i.e., verbs of motion mostprobably depict the
patient’s effected motion; otherwise the verb most probably depicts the agent’s causing antivitgon).
However, these semantic properties mo¢ alwayssufficient, since the samerb maybe used to indicate
either theagent's action, or the objectisotion, asexemplified in sentence§-ii) from Fauconnier and
Turner (1996):

0] He trotted the stroller around the park

(i) The trainertrotted the horse into the stable
In (i), the verb ‘trot’ refers to theausal agent (it ithe causal agenivho is doing thetrotting, andthereby
making the stroller move around the park). In (ii), the verb ‘trot’ refers to the affected patient (ihirsdbe
trotting into the stable. The trainer could be walking, holding the horse's bridle)



While in 10, it is probably the air displaced by sneezingghwgsicallycaused the napkin to
move, in 1lthe effected motion imssumed to beolitional and is dueto cognitive
(epistemologicaldecision ofthe patientather than the@hysical causatffect of sneezing.
The different properties of the affected patient andiifierence in themplied causal force
suggestdifferent mannerof effected motionevents in sentences 10 afd. In other
words, to infer the manner of the effected motion exantequired for translationa whole
sequence of events must leeonstructedpartial aspects oivhich link to lexical items in
the linguisticutteranceThe MT system, thusmust perfornthe full "de-integration” and
blending reconstruction operatiodsscussed irthe thesis (sectiorR.4) for generating a
semantic remsentationof the input sentencevhich is “sufficiently complete” for
translation. Theassociation of dinguistic uterance(such as 10-11ith a sufficiently
complete semantiaepresent&n is therefore clearly not an operation oflogical
instantiation Rather,the input sentenc@he linguisticblend) must belinked to fragments
of episodic memorye.g., menories on the typicahotion of light objects like ‘napns’,
of observedphysical effects of ‘sneezing’ oabjects aroundthe sneezer,etc.). Each
episodic fragment is encoded separaiteiyne ontology anall are combined together only
temporarilyfor the specific linguistic blend (input sentence).

Note thatthe abovediscussion isalso relevantfor more frequentlyobservedcausal
scenarios (whosentegration into a sirlg structure is morentrenched in language and
memory) as in example 9 discussed before:

9) The audience laughed the actor off the stage.

In the idealcase(i.e., given anontology asrich asthe humanmemory), what the
ontology might include is a frame iepisodic memory representirgyfull sequence of
events whereby a group of people laugh at another person (or more generally perform some
insulting act towards anotheerson),and the laughtefinsult) makeghe personleave the

placewherethe group is Iecated. Thiggeneralepisode igorobablycommonenough to be



encoded in the human mirfde., most peopléhaveprobablyencountereduch asepisode
either by being themselves a ‘victim’ ebcial insult, or by watdng, readng or discussing
such arevent andts causaleffects). This event may beaepresented irthe ontology as

follows (Figure 9-4):

CAUSED-MOTION-by-insulting Def: “A insults P, thereby causes P to move awav"

Event-1:
Insulting-act (I): (laugh)
Agent (A-D): (audience)
Patient (P-I): (actor)

at-Location: ...

Event-2:
Motion-act (M): (laugh)
Patient (P-M): (actor)

from-Location: = ......

to-Location: ...

Figure 9-4: A frame representation of the generic event structure
MOTION-CAUSED-BY-INSULT.

Note however that the episode (or categirgpisodesyepresented ifrigure 9-4 may
also be encoded linguistically in mamgys, as in “X lauged Y out of Z” or “X made Y
leave Z(by insulting her)”, or “Y ran-away from Zbecause oK’s insult)” and soon...
Eachlinguistic expression othe episode involves different linguistic blendingof the
sequence of events into a differenbtsitc construction whilehighlighting and omitting
different aspest of the event(i.e., each integrationinvolves a different mapping
configuration). In otherwords, evenwhen awhole recurringcommunicatedsequence of
events is already represented as a single frathe ontology, therés no one well-defined
"Iinstantiation rule"between theframe structure andhe linguistic fem. The language
interpreter (the NLRystem) must 8k infer the particulaimapping configuration involved

in each linguistic blend.



To summarize,the discussion inthis se&tion points out thatthe computational
translation of some basidausestructures(even isolatedsentences with no background
cultural or textual onsiderationymay require(for the very basic“functionally sufficient”
semantic re@sentation othe sentence) nainly a detailed episodic memory, but also
sophisticated compational too to discovethe links between the linguistiatterance and
episodic frames inmemory. Thediscovery of these links involvescomputational
mechanismawhich often gobeyond simple logical inferencing from generalframes to
instantiating eventsnvolving ratherthe recaostruction of complex mapping patterns from
fragments of episodic memory tee linguistic form,where some aspects thie event are
linguistically represented andthersare not explicitlyexpressed. Tgrovide the right
interpretation foreachpossiblelinguistic blendusing onlymethods ofogical instantiation
(or inference from generabse tgarticular instancesyould involve theencodingof each
possible linguistic integration (blending) from each set of eventstructure toseveral
appropriate linguisticstructures.This means infact thatall possible blends thatan be
generated by human speakers in any time must be encodedéaithene individually, or
for more general categories wéry similar events, i.eevents whichnvolve very similar

agents, patients, and interactions). This, of course, is not feasible.

It is important to notehere, however, thathe discussion inthis chapterrefers to
translation examples where the linguistic blend underliegxpression of agvent in the
source and targidanguages iglifferent (as dictated by theconstraints ofthe different
grammaticalconstructions irthe two language)While the tenet ofthis dissertation, as
discussed irchapter 2, is that every linguistictetance is generated by linguistic blend
(i.e., bythe mapping ofan eventonto anintegrating syntacticconstruction), it is not

alwaysthe case that fll reconstruction ofthe blending configuration is needddr the



purpose oftranslation,since in manycasesthe samelinguistic blend is conventionally
employed in thesource andargetlanguages. In such casdmnslation can proceed by
simply replacing lexical itemgr sub-clauses) ithe sourcelanguagewith their dictionary
equivalents in thdargetlanguage. The source artdrget languageeaders will each
independently reconstrutite full communicated evefitom the partialinformation in the
linguistic structure (the source or target sentence).

| suggest that similarities inlending configurations and conventionstlie source and
target languages is what enables succeasfomatic translation (bMT systems) ofmany
linguistic utterances, and it is also probably what undeitiessimplistic engineering view
of translation(discussed in séon 9.1.1) as airect “decoding”process. lis however
important to note that while many sentenceshmatranslated into &rget languageithout
figuring out the complicated mapping between the linguisticstructure and
episodic/ontologicdirames (onlybecauseéhe same mappingonfiguration isused in both
the source and tgetlanguage), irother cases reostruction ofthe blending operation is
required.

From apractical point of view, the importance of théeiscussion inthis chapter for
current NLP systemis in the way NLPdeveloperdreatcases where NLP systerfasl to
produce the right output (e.g:ases wheréirect ransfer oflinguistic unitsinto the target
language does not produce asceptabldranslation). Tie almostautomaticassumption in
such cases is that the failure stems frooompleteknowledgeencoded irthe system(i.e.,
the linguisticknowledge andalgorithms,the ontological frares, orthe statistical p#trns
retrieved from corpora are assumed to be inigeear notcomplete).The reaction of NLP
system developers tfailures of the system is thususually in amodification of the
knowledge structures ithe system (toooften in ad-hocfashion) just to discovethat
another problenarises inthe next round. What th@iscussion irthis chaptersuggests is

that theknowledge-basethemselvesnay be correcand complete, whilé is the creative



way these permnentknowledge-structureareintegrated(conceptally and linguistically)

that is not captured by the system’s algoritfins

In the nextsection, Iwill briefly discusssome current researclrends inNLP to
extend thegpower of NLP systemgpreventing failuresn processingnput texts). These
methods focus on the role lekical properties in defining theemantics (and translation) of
a sentence, antty to cope with failures othe system byenhancingthe lexicon with
generalsense-extension rule$hesemethods, howeverfail again toacknowledge and
treat the real creativaspect of languagprocessingWhile the generalrules encoded in
these methodsan captureconventionalblends (i.e., blends thatare entrenched and
repeated irconversation), thewre not generaknough toaccountfor temporary novel

blends.

9.2.4 Lexical mechanisms in semantic processing.

A large number ofrecentNLP systemsencode semanticnformation as‘lexical-
semanticproperties” associatedirectly with lexical items (rather than in theform of
‘metlinguistic’ ontological knowledge). Thisfollows a general current movia linguistics
theories taattempt toaccountfor all semantic interpreti@in and surfaceyntactic structure
through lexical-semantianformation encoded in individudéxical items (e.g., Bresnan,
1982; Levin, 1993).

Recent work has increasingly emphasized‘theative” aspets of languageuse where
word serses can beextendedn context in cases such ametonymy (Nunberg, 1978,

1993), and metapho(Lakoff andJohnson, 1980)These phenomerae oftentreated in

25 For example, in the sentenémnk sneezed the napkin off the talhe informatiorassociated witheach

lexical item in the sentence is probably a default one (tHahéeze’ refers tahe defaultact of ‘sneezing’,
‘napkin’ refers to a prototype napkin, and so on). beelty of this expression is the way thesalefault

knowledgestructuresare linguistically integratedtogether,and hencerelated to eaclther semantically in
the sentence. Mifying the defaultproperties ofsneeze’ or'napkin’ to providethe correctinterpretation
would be only an ad-hoc solution and will not solve the general problem.



computational linguistics literature through lexical mechanismssuch as coercion
(Pustejovsky,1991; Pustejovskyand Boguraev, 1993),and lexical extensionrules
(Copestake &riscoe, 199% In particular,researchas concentrated in recelyears on
identifying classes ofexical items (with special reference teerbs)with sharedsemantic
components, whose syntactic “behavior” can be predicted from the meaning components.
For exampe, Levin (1993) discussegerbal diathesislternations - alternations in the
expressions of arguments, aogmanied by chages of meaninglhe diathesisalternations
are assumed tarise systemwticaly from the verb meaning. Therefore, groups of verbs
which form asemantically coheremiasswould shareghe same alternatigoatterns.Levin
notes, forexample thatmost verbsof soundemission(e.g., buzz, hiss, ide, wheezge

whistle) allow locative (or directional) alternation, as in 12:
(12) The wind whistled.
The wind whistled round them.

This observedehaviorsupports aeneral‘'senseextension” rule as i3, which is
accompanied by an alternation amgumen structure (i.e., the addition ofa locative

prepositional phrase).

(13) Extension Rule: sound emission V --> motion V
In Copestakg1995) and Ostler et al. (1992), senseextension ruledor nouns are

discussed, such as:
(14) (a) ‘Animal (countable noun) -> Meat (mass noun)’

Marry had a little lamb.
He won’t touch lamb anymore.

(b) ‘Comestible substance -> Conventional portion’
She doesn’t drink beer.
She bought two beers.

(c) 'Container -> Its content’
The bottle broke.
He drank a bottle of Whisky.

Work on other languages suggests faaise extension rulésuch as 13-14arefound



cross linguistically, butnay differ in the groups ofexical items towhich the rules are
applied, andthe syntactic and morplogical phenomenanvolved in the alternation. It
follows then that the application &fenseextension rulesacrosslanguagegnay lead to
translation divergences (or mismatches).

For exampe, while walk is translatednto French asller (or aller a pied), the phrase
walk acrossis translated agraverser a pied(i.e. ‘cross by foot’). This "translation
divergence” could be accounted fordgtendingthe sense ofvalk in Englishinto asense
of ‘crossing’ (in the context of the adveaibrosg, an extension rule which is nparalleled
in French. In thesame spirit, fobwing Talmy’s work on motion event conflatioriTalmy,
1985, 1991)the motionsemantic compant in sentences likéhe bottle floated into the
cavecould be incorporated by extending seenantic properties dlfie verbfloat to include
a meaning component of ‘directed motion’. The sense-extension rule will solve the problem
of translating thissentence into “verb-framedlanguages (in Talmy’'s terms) which
normally expresshe direction of motion (the ‘path’) in the nee while information about
manner(‘floating’) is expressedeparatelyor just omitted). Thus, for examplethe fact
that the English sentent® battle floated into the caves translated intd&Spanish (averb-
framed” language) ala botella entré a la cuevéithe bottle enteredinto the cave’) can be
captured by @ense-extensiorule for the \erb float (which addshe meaning component
‘directed motion’, and a tresfer rulewhich linksthe extendedense ofloat and theverb
entrarein Spanish througlthe shared meaning component‘directed motion’). Another
relatedsolution isproposed byDorr (1993), in acomprehensivatudy of alarge bulk of
translation divergences. Instead of solviranslation divergencproblems througlsense-
extension rules, Dorr proposes tdreat them by identifying general surface-level
distinctionsacrosslanguages athe level of lexical-semantistructure,and factoring out
these differences in the translation process.

Note that followingthis line of researchhe "translation divergencestliscussed in



chapter §translating English Caused-Moti@entences inttdlebrewand Frenh) would
also betreated bypre-encodedules atthe lexical level. For examplethe “translation
divergence” in 15 l{elow) may be accountetbr by enoding arule which extends the
sense(or lexical properties) ofthe English verbblow (or its larger lexical-semantic
category) to aense ofcause-to-moveby-blowing)’, wheneverthe verboccurs with the
Caused-Motion syntéic argumentstructure [NP V NPPP]. The extendedsemantic
structure ofblow asthe mainverb of sentence 16an then be translated directly into

Hebrew to generate the main verb in the Hebrew target sentence.

(15)  English: The wind blew the boat off course
Hebrew: Haruax hesita(n.s.t-hif’il) et hasfina mimaslula.

'The wind shifted the boat off its course'

There aretwo problemswith this approach.One is noted by Goldberg (1995).
Goldberg points outhat thetheory of Levin and others (e.g., Levin, 1985;Levin &
Rappaport1988;and also Piker, 1989) isforced toclaim that a verlsuch asblow in
English hasseveral different sensgblow;, blow, ...), one foreachuse (as irthe wind
blew hard vs. the wind blewthe ship off coursg. However,the only evidencefor the
different senses of the vettdow is the fact that itoccurs inthe particular linguistic
configurations giverabove. Themotivation for assigningdifferent senses to the verb is
thus circular (and suggests that we may be dealing with ad-hoc assignment o#ésenses)

The problem withthe lexical senseextensionapproach is even moracute when
considering the translation of English caused-motion sentences irttebrew. An
underlying motivation in the “lexical sense-extension” line of research is the preservation of
compositionalityin semantics and in translatigne., that thecomposition of*"meaning

components” inthe source texare translated into the targeihguage). But note that for

26 Goldbergsuggests that thdifferent semanticsassociateavith the full clause wherhe verbsoccurs in
different syntactic environments should be attributed tsyhéactic constructions themselves rather than to
the verb (see presentation in section 1.2.1).



translationpurposes it iot enoughto extendthe semantics of the verblow’, when
occurring withthe Caused-Motion argumestructure,into ageneralcaused-motiorsense
(i.e., ‘cause-to-move-by-blowing’). To preserve compositionality in translatisamantic
component identifyinghe particular type of motion evehas to beincorporated into the
extended semantistructure ofblow aswell (as translation intoHebrew suggests, see
examples in section 8.4.1). The problem is agahthe particular typef motion involved
cannot be predicted in advance in the pre-encoded sense extension rule for bhevwelto
is the particular participanigsivolved in every instancef the caused-motiormacro-event
that define the type of effectedotion. Thesame vertblow or sneezeoccurring with the
samesyntactic structure but witHifferent participantsinstantiating theconstructionwill

evoke different types (manners) of motion (see examples 10-11 in the previous section).

9.3 Conclusions

Melby (1995:48) cites Minsky1994) whosaid thatone thing whichseparates current
machinesfrom humans ighe flexibility of the humanmind. When a compter program
encounters aituationfor which it has nobeen explicitlyprogrammed, it ¢her stops or
produces meaningless results. When humans encounter a new situati@ne tbitgnable
to try various solutionsintii somehing works. This description fits welthe problem of
processingnovel linguistic blends: creative blends cannot be programmeith advance.
However, whenpeople encounter aew blend, theyare usually able toreconstruct a
possible set of correspondeng¢asmapping pattern) betwedme linguisticstructure and a
probable sequence of events in the world.

The gaal for future research ilNLP, | believe, is totake thenotion of blending and
linguistic crativity serpusly, and conduct basic research to lodkr ways to
computationally simulate creative blending ggsses, deast tosomeextent.The analysis

in this chapter suggests that translatiore(an very basisentencestructures)ould never



be doneaccuratelyenough withouincorporation of dynamicognitive processes such as
mapping,blending andntegration of representationatructures. So far, wenay have
identified only asmall part ofwhat is heeded tamake themodeling of dynamic general
languageprocessingpossible, butthis is ajumping off point for beginning to build
machines that act more like human&’do

The discussion irthis chapteralso points to ateasttwo reasons why MT systems in
their current form can still produce partiallysuccessful resultsvithout completely
simulating creative blending operations. One reason is that iro§pite immense potential
for flexibility in the generation of linguisticexpressions, much ofanguageuse is
entrenched angredictable(if not in a deterministicway, then atleast statistically), as
suggested by the relative successtafisticalNLP systems (s¢ion 8.1.2.1). The second
reason ighat intranslation, it isvery oftenthe case thagxactly the sam&nguistic blend
(i.e., a similar integrating construction and a similar mapping pattern) is favored in both the
source and the target languagesxpress an event. In suchsesthe additional semantic
structure imposed otie linguisticblends byhuman readers isansferredinto the target
language without being explicitly expressed in the translation.

In practical terms, the analysis in this chapter makes several points:

(1) That it is a mistake to try and account for every failure dflaR system tqrovide
a correct “model” (interpretation)for an input sentence byassumingnecessarily that the
permanenknowledge structures the systemare inaccurat@end should be modified or
extended.Often theknowledge structureare accuratend complete. Théailure of the

systemmay result from the speaker’screativeintegration (blendingof thesepermanent

271 do not intend to clainhere that theparticularcognitive skills thathumans use itanguage processing
(whatevertheseskills are) arenecessarilythe only right onegor an NLP machine touse.However, | do
suggest that NLP systems cannot afford to ignore these type of processes and skills and the pmgeritive
they provide.



knowledge structures into new temporary structures.

(2) Pre-encodednferencerules can captureonly the most entrenched (repeating)
instances of blending'hey cannosolvethe core problem ablending.Reconstruction of
blends has to be performed on-line, imitatignan cognitive creativitin finding possible
correspondencebetween linguisticforms and complex events ithe world. Finding
correspondences involvebstractingpreviousencountered events encoded ntemory,
and searchindor optimal mappingsetween fragments afetrieved structures and the
information communicated irthe linguisticutterance, in avay which complies with the
grammatical blending conventions of the langd&ge

Even if blending mechanisms canntse completely automatedvith current
computationatechniques, it istill importantto realizewhich aspects of failures of NLP
systemsare duesimply to ascale problem (which more powerful computers andbetter
algorithms can solve), and which are duehi® verynatureof languageprocessingrersus
current computational techniques .

(3) Computationally,the mechanisms of languagenderstandingdiscussed inthis
chapter(such aghe de-integratioomechanismsgre very differenfrom the traditional Al
logical inferencemechanisms. lgeneralwhile logical inferencerules necessariljpave a
single definite outcome, the mechanisms of languag@eterpretationdiscussed inthis
dissertation define only genembceduredriggered by variougrammaticaforms (e.g., a
grammaticalform such as the English Caused-Motionconstruction, orthe Hebrew

binyanim trigger “de-integration” procedures guideylspecificconstraints), whosactual

28 Note that the basic problem pérceivinganalogiesincorporates initself the problemof simulating
cognitive creativity. Dougladiofstadter(1995b) points out that mosturrentcomputational radels of
analogy-makingerroneously incorporatéhe structurakimilarity into the structure ofthe input domains
beforehand. This form of modeling fails to capture ¢hemativeaspect ofanalogy-makingvherepatterns of
similarity dynamically alterfrom one context to another. Sommeodels of analogy-aking such as
"Copycat" (Mitchell and Hofstadter,1990, 1993)incorporatesome level ofdynamicon-line simlarity
detection that changes in context (see also the discussion by HalydBlrnden,1994, wherethey point
that "Copycat" is guided bysbftpressures rather thaigid requirements”, as in rule-based Al systems).



applicationvariesbased orthe semanticand ontologicalproperties associated with the
particular linguistic instance. In otherords, while traditional lexical inferencerules(e.g.,
sense extension rules) are in ¢femeral form ofif X has property ‘p’ (incontext Y) then
add (orreplace)property ‘q’ in X”, the mechanismsliscussed irthis thesisare of the
generalform of “if X has property ‘p’ (in context Y) theapply procedure gto X”. The
outcomeof applying procedure q to Xlepends orthe semantigroperties of X and its
context Y, andhusvariesfor different instances of XWhatguides andctonstrainsthese
procedures requirelsetter understanding of humalmguistic blendingprocesses.Ainal
note should be made about the implicatiofithe discussiom this chapterfor research on
human-aidedVachine Translation. Many recent MT projects hdveppedthe requirement
that the MTsystem would béully automatic, and include instead some form of human-
machine interactioaluring the process oftranslation,typically with the computerasking
guestions anthe humarpartneranswering themCurrently no onehascomeclose to a
successful interaction between human arathine intranslation. Particularly, it is not yet
clear what kind of questions should be posed by the system to the human, at what stages of
the translation process, and how would the interagtiooeed. The essential idsafor the
NLP system taautomaticallyprocesshe “low-level” simpletasks, but tanteractwith the
human user in making the more difficultdecisions (e.g., syntactic andsemantic
disambiguation(Nirenburget al, 199). Depending on th@pproachtaken to language
processing and translation, the type of human-machine interaction changes drastically.
The analysis of translation examples in this manusstiggests that antegral part of
the translatiorprocess ighe inferring of additional informationbeyond what isexplicitly
provided inthe text(i.e., beyond,for example,the disambiguation of exmdit linguistic
information). The discussion in this chapter alaggests that this task currently beyond
the computationapower of NLP, since the extra information often cannot be derived

logically by pre-encoded inference rules, but rather involves novel complex manipulation of



existing knowledge structures (througbrocesses of armajy making, mapping, and
integration ofpartial structures). However, in otast to NLP systemshuman seem to
excel inthese types oprocesses (as igent inthe mostly flawless processing afreative
linguistic blends byhumans). Thestraightforwardconclusion, is thathe part of the
translationprocess, wherextra informationrmust be added tthe semantigepresentation
of a text to enable its correct translation, is especially suited for human intervention.
Pierre Isabelle (1993) notes that within the ‘human-aided MT’ paradigm, “humaaes
persistently beeasked to dahings thg would rather notdo, ...., like answering odd
guestions about phrase bracketing or rearrarigzayre jumbles ofarget languagevords”
(p. 202).Rather than tiring humapartners withunintelligible machine-liketasks, we
should take advantage of what humans are best at, and what mackinwesst at: making
cognitive decisions based on detailed knowlemfg&rototypical eventgepisodicmemory).
In such a system, it would libe task ofthe MT system tdadentify the need to augment a
semantic representation otext, but it would bethe humanpartnerwho would actually
provide the additional semantic-pragmatic content (when prompted by the machine).
For example, consider the translatminEnglish caused-motion sentences iHigbrew
or French discussed in chapters 8-9. In symbolic interlingual MT, the systemidentity
(based on the syntactic form of the English input sentence, and theusewveithe verb in
the construction)that theinput sentence&eommunicates aovel linguistic integration of a
caused-motion eversiequence. ThBIT system wouldhen prompthe humarpartner for
help. A sophisticatednteractivesystem wouldalso presenthe humanparticipant with
information exractedfrom the linguistic structurebased orpre-encoded rulege.g., the
system wouldidentify the agent, moing patient, andhe direction of motion in the
communicateccaused-motiorevent). The system would then asthe humanpartner to
identify a probablé‘causing” and/or‘effected” motion event. Theinformation required

from the humanpartner couldalso be guidedy information onthe type of integrating



linguistic constructions available in the targgtguage, anthe particular asmés of events

most commonly encoded via the target language constructions.



