
Chapter 9:
Blending and NLP

9.0 Introduction

In this chapter, I will discuss research in computational Natural Language Processing

(NLP), in light of the linguistic blending analysis in the previous chapters. The discussion

and examples will focus on the problem of Machine Translation (MT) - the computational

translation of text from one natural language to another. The aim of this chapter is not to

propose computational models for natural language processing and translation. Rather, the

aim is to analyze the theoretical implications of the blending analysis (in chapters 2-7) for

future directions of research in NLP.

As Kay et al. (1994) note in the introduction to their book on the Verbmobil speech

machine-translation project, “to many laymen, it is incomprehensible that we can build

machinery that can convey a man to the moon, but none that can translate even very simple

texts into French” (p.3). After many years of painful efforts in NLP, researchers still find it

hard to identify what it is exactly about language and translation that defies all attempts of

computational modeling, and just what could improve the quality of the result. In this

chapter, I point to the role of linguistic blending operations as one source of difficulty for

computational modeling of language processing and as an important direction for future

research.

Maybe the most problematic aspect of computational language modeling is the influence

of context on language interpretation. Numerous researchers in NLP (e.g., Kay et al.,

1994; Nirenburg et al., 1992; Melby, 1995) have discussed the role of context as adding

shades of meaning to linguistic forms, and influencing their translation. Input texts, it is

suggested, cannot be processed in isolation: rather information from the contextual setting

of the text must be taken into account. The term context includes both linguistic context



(i.e., the previous stretch of text or discourse and, how it influences the interpretation of

the current utterance), general world (“common sense”) knowledge, and the cultural and

communicative setting (see section 9.1.3). Kay et al. (1994) maintain that language is

always situated in some contextual setting, and that the importance of the contextual setting

is erroneously overlooked since speakers take it for granted. Discussing the role of the

contextual setting in translation, Kay et al. note: “every professional translator is keenly

aware that a great deal more than linguistic knowledge is required for the job . . . That

crucial knowledge that a translator must have has almost always been overlooked . . .

because it is shared by most humans, especially when they have a largely common culture”

(p. 6). In recent years various attempts have been made to incorporate contextual

knowledge into NLP systems. First, knowledge-based methods developed in AI (Artificial

Intelligence) were adopted in NLP systems in the form of extra-linguistic world-knowledge

data-bases that guide the linguistic processing of input texts (see section 9.2). Second,

methods for computing textual context are also being developed1 .

In this section, I will suggest that an additional crucial skill a translator (or any language

speaker) possesses has been overlooked in research on computational modeling of

language: the ability to creatively generate and interpret linguistic blends of the sort

discussed in this dissertation (chapters 2-7). While contextual knowledge has played a

central role in the examples studied in previous chapters (for example, in the imposition of

prototypical cultural-experiential scenarios on interpretation of blends), the discussion in

this chapter will concentrate not so much on the role of contextual knowledge in language

                                                
1 While the various knowledge representation systems in AI have traditionally stressed representation of
isolated propositional meaning, we do find recent attempts to incorporate considerations of the larger textual
context. For example, Hovy (1988a,b) incorporates planning at the level of multisentential text in language
generation. Nirenburg et al. (1992) report that in the computation of meaning of input texts, information
about the “setting of the communication situation” is incorporated including parameters such as “the
properties of the participants and their relative social status” (p. 75).



processing as much as on the necessary mechanisms for manipulating world knowledge

and linking it to linguistic structures. For the discussion in this chapter, I will assume that

“general world knowledge" (e.g., knowledge on prototypical scenarios in the world, or the

functions of objects in the culture, etc.) is already coded in some form into the

computational system. The issue I will focus on is how this knowledge is dynamically

accessed and manipulated for the purpose of language processing. I will claim that the

dynamics of mechanisms such as blending has been largely ignored in NLP, and that

research on understanding and modeling such mechanisms must be pursued in addition to,

or in parallel with, research on the coding (or statistical extraction) of "common-sense"

knowledge. The discussion in this chapter focuses on the complex links that exist between

grammatical forms and semantic structures. The sentences to be discussed are isolated (de-

contextualized) sentences, so the role of discourse context (and the set of pre-assumptions

it defines) will be ignored in this chapter.

The analysis in the previous chapters of the dissertation suggested that linguistic

processing of even very basic clause structures (such as the English Caused-Motion

construction, or the various Hebrew basic syntactic constructions and binyanim) involves

complex mapping and integration operations. The language by itself provides only partial

cues for the "de-integration" process: the "un-packing" and elaboration of linguistic

utterances into conceptual representations. The analysis also suggests that much of the

"integration" and "de-integration" operations are automatic, especially when triggered by

very entrenched, conventional linguistic blends. What the entrenchment does is make the

blending configuration less noticeable, but the blending schemas themselves (extracted and

generalized from many linguistic instances) are still available for conscious processing. The

conscious processing of blending operations is particularly noticeable in novel grammatical

blends (e.g., in the coinage of novel root-binyan combinations in Hebrew - section 4.3, or



in novel lexical-syntactic combinations expressing caused-motion events in English -

section 2.1), or during translation when switching between different blending conventions

in different languages requires their conscious processing (chapter 8). But activation of

blends also takes place in the everyday automatic elaboration of sentences during their

interpretation (for example, the Hebrew stem hif'il  marks that the event denoted by the root

is part of a larger causal sequence. The binyan thus prompts the hearer to elaborate the

semantic content of the linguistic structure, chapter 4). In this chapter, I will discuss the

role of such "conscious" reconstruction of blending configurations in NLP systems.

Through the analysis in this chapter, I will make the following claims:

(1) Though many NLP systems incorporate vast amount of general world knowledge

(in the form of hand-coded or statistically extracted rules), the use of these databases in

generating a “functionally sufficient” semantic representation of linguistic structures is still

very limited. In actual practice, contextual knowledge is used primarily to disambiguate the

input text, but rarely to add information not explicitly provided in the text (information

which may be necessary for further processing, e.g. translation).

(2) A mistake is often made when dealing with failures of an NLP system (e.g.,

failures in providing a correct “semantic model” or translation, for an input sentence) in

assuming that the linguistic and world knowledge structures encoded in the system are

necessarily inaccurate and should be modified or extended. Often the knowledge structures

are accurate and complete, and the failure of the system results from the speaker’s creative

integration (blending) of permanent knowledge structures into new temporary structures.

The novelty of the input text is in the way the default structures are linguistically integrated

together (and hence related to each other semantically in the sentence), and the goal of the

system is to reconstruct these novel temporary blends for successful processing of the

sentence. Modifying the permanent knowledge-bases of the system will not provide a

general solution in such cases.



(3) Applying contextual world knowledge solely via "pragmatics" modules which

modify an interpretation of a sentence after a basic semantic structure is computed is often

ineffective. In the examples discussed in this dissertation, world knowledge guides the

very basic assignment of a minimal semantic structure to a linguistic utterance.

(4) Pre-encoded inference rules can capture only the most entrenched (repeated)

instances of blending. They cannot solve the core problem of blending. Reconstruction of

blends has to be performed on-line, simulating human cognitive creativity in finding

analogies and performing analogical mapping between retrieved knowledge structures and

linguistic forms. To interpret a sentence in the view of this dissertation is to reconstruct a

set of correspondences--a mapping--between a linguistic form and conceptual (knowledge)

structures.

It should be noted here that though the discussion in this chapter suggests that current

underlying assumptions of NLP research cannot generally support the findings of

grammatical blending and translation in this dissertation, the discussion does not intend to

imply that NLP research in its current form is ineffective. Not at all, because, in spite of the

immense creative nature of thought and language (as reflected in the blending examples

discussed in this dissertation), much of language use is in fact entrenched and predictable

(if not in a deterministic way, then at least statistically). Current NLP systems can capture

these repeated entrenched chunks of discourse and the conventional contexts when they are

produced, and the partial success of NLP systems today shows that indeed these methods

can produce acceptable results to some extent. In particular, the surprising relative success

of statistical NLP (including statistical MT, see section 9.1.2.1) which is based on simply

reiterating pieces of sentences from existing corpora, points to a prevalent trait of language

generation by human: chunks of discourse are repeated by people over and over again. The

analysis in the chapter claims however that for the future goal of highly automated NLP,



mechanisms for creative processing of language must be understood and incorporated as

well.

The main challenge is the following: could automatic language processing (e.g.,

translation of even very simple technical texts) be done accurately enough without the

incorporation of dynamic cognitive processes such as mapping, blending and integration of

representational structures? My analysis suggests: probably not! And acknowledging the

importance of such processes is the first step in enhancing NLP technology. Even if

completely automatic modeling of analogical mapping and integration operations is not

possible at this stage, some of the conceptual blending power can be incorporated into

computational systems: for example, by encoding various levels of entrenched blends and

using statistical information to choose among possible blends, or by incorporating human-

machine interaction into NLP systems to interpret or generate grammatical blends (the latter

issue will be discussed very briefly in the conclusions section 9.3). The incorporation of

such mechanisms requires first that we understand them: we need to know how and when

blending mechanisms take place in language processing in order to identify the kind of

knowledge we need to encode in NLP systems, and how NLP systems could process this

knowledge. In addition, even if blending mechanisms cannot be completely automated with

current computational techniques, it is still important to realize which aspects of the failure

of NLP technology are due simply to scale problem (which more powerful computers and

better algorithms can solve), and which are due to the very nature of language processing

versus current computational techniques2 .

                                                
2 It is often the case that the shortcomings of current NLP technology are attributed to insufficient advances
in either of two underlying sciences:

(1)    Formal      Linguistics   - The scientific understanding of the formal properties of grammatical systems is
still far from being complete. A common assumption is that advances in the knowledge of formal
linguistic systems will improve the performance of NLP systems.



The structure of the chapter is as follows: My analysis will focus on a sub-field of

NLP, the field of Machine Translation (MT). I will start with a general presentation of the

field of MT, its goals and its main approaches and strategies (sections 9.1.0-9.1.3). I will

then go on to present what are typically considered to be the main problems in MT from the

point of view of the system developers, and how these problems differ from the type of

problems associated with translation of novel blends (section 9.1.4). In section (9.2) I will

discuss the computation of semantic representation in NLP, and whether the techniques

used today are capable of dealing with novel linguistic blends. Section 9.3 sums up the

analysis in this chapter.

9.1. The field of Machine Translation - background

9.1.0 The prospects of Machine Translation

People interested in language and technology tend to react to the notion of Machine

Translation (MT) in a passionate manner. Many are enthusiastic about the prospects of MT

in the future. This is particularly evident in commercial circles as well as in science fiction

literature. In the popular television series Star Trek, the computer in the star ship

(Enterprise) can translate anything from any language. Visitors from other advanced planets

have MTs installed in their heads. Fascination with MT is also shared among prominent

figures in the computer industry. In a recent interview with Gordon Moore, the chairman of

the board at Intel (Yediot, January 24, 1997). Moore predicted that the main advancements

                                                                                                                                           
(2)    Artificial     Intelligence     and      Knowledge      Representation   - NLP technology must rely on extensive data-
bases of extra-linguistic general world-knowledge. However, there is currently no reliable and coherent
way for representing general world knowledge computationally. Therefore it is often suggested that when
the technology for representing knowledge in computers improves, so will the performance of NLP
systems.

The analysis in this chapter suggests that even advancement in these two fields is not sufficient for high
performance of NLP systems. Simulation of human cognitive skills (such as blending) is required in
addition.



in computer technology at the beginning of the 21st century would be speech technology

and MT. Moore believes that in the very near future we will be able to communicate with

our computers using spoken everyday natural language, and converse on the phone in

different languages with simultaneous computational translation. In contrast to enthusiastic

followers of MT, we also find many who argue passionately that MT has no future:

computers are so limited and translation is so complicated, that the whole idea of automated

translation is impossible.

At the current stage of MT research and development, I believe both extreme

approaches to MT are misguided. On the one hand, the goal of fully automated human

quality translation is clearly far from our grasp, and the discussion in this chapter further

suggests that present NLP techniques are not powerful enough to imitate the immense

flexibility and creativity of human language processing. On the other hand, MT companies

already provide customers with computational translation systems that perform

economically profitable translation at various levels of automation and quality3,4. The

relative success of commercial MT systems today is still a far cry from the euphoria of the

1950s, when researchers seriously thought that the machine was going to take over the

territory of translation as a whole5. What we see instead today is a redefinition of the

original goals: instead of aiming at developing fully-automatic high quality MT (FAHQT),

                                                
3 The most prominent example of a successful MT system is SYSTRAN, a system developed based on
work in the late 1950s and early 1960s at Georgetown University, which is still commercially active.

4 Experience with commercial applications of MT systems suggested that low-quality automated translation
can be useful in certain contexts. Melby (1995:36) discusses the most prominent example: for the gathering
needs of the U.S. airforce, scientists are expected to study relevant scientific articles written in Russian.
Based on low-quality automated translation (MT), scientists can now select a small subset of the Russian
articles for human translation.

5 None of the major basic research projects on MT in the world so far has attained the original goal of
developing a high quality fully automated MT system (for example, both Eurotra - the major European
effort in MT, and the Japanese Fifth Generation Computer project in which MT was a primary segment,
ended without fully achieving their original goals).



current research efforts concentrate more on the goal of Machine-Assisted Translation, and

the development of translation tools (Melby, 1995:41). From a scientific point of view,

Machine Translation still remains one of the most intriguing domains for studying cognition

and computation, and a primary test ground for linguistics models. Rather than dismissing

the field scientifically (as some scholars do) because of its immense complexity, I believe

that basic research should be directed at understanding where MT succeeds and where it

fails in comparison with the human mind.

9.1.1 General strategies in MT: a brief history

During its early years, machine translation research was viewed as primarily an

engineering task: translation was compared to a cryptographic code-breaking task6. The

success of cryptography in breaking the Nazi code during World War II encouraged a view

of MT as a feasible and attractive application of the new computer technology. Advances in

linguistic theory and repeated failures of the first-generation systems to achieve their stated

goals have united to discredit this attitude. Through the 1950s and into the following

decade, machine translation has come to be understood as an application domain of formal

linguistics and computer science, what would later become known as the discipline of

                                                
6 A known citation from Warren Weaver’s (1955) original memo for MT best exemplifies the simplistic
(engineering) view of translation and the underestimation of linguistic complexity. In Weaver’s view, the
linguistic content and structure of the translated text is exactly the same for all languages; only the encoding
system differs: "When I look at an article in Russian, I say: “This is really written in English, but it has
been coded in some strange symbols. I will now proceed to decode”.
   It is interesting to note however that many of Weaver’s original suggestions have gained renewed
popularity in a recent movement from rule-based MT towards statistical and corpus-based MT. Weaver noted
that in contrast to cryptography, language involves ambiguity and therefore it is expected that a single word
in the source text may have several possible translations. However, Weaver noted, if a human is allowed to
see the word or two preceding and following the translated word, it is often possible to figure out what the
word means and what its translation should be. This basic idea is used in statistical MT today which
collects statistics on the translation of a word given its immediate context (preceding and following word in
bigrams or trigrams). The basic problem of translation however still remains with this method: i.e., that
translation of a sentence is not really a translation of its individual words, as will be discussed in this
chapter.



computational linguistics.

The syntax-oriented approach of computational linguistics was criticized when it was

demonstrated that fully-automated high-quality machine translation is possible only when

some meaning of the input text is taken into account. The first to criticize contemporary MT

research on this ground was Yehoshua Bar-Hillel (1959, 1960), who (looking back)

focused on the role of context in lexical disambiguation of sentences. His now famous

example was:

(1)  Little John was looking for his toy box. Finally he found it. The box was in the 

pen. John was very happy.

 The word pen has (at least) two meanings - a writing tool and a playpen. Bar-Hillel’s

point was that a lot of practical information about boxes and pens, their use and their typical

size is needed for deciding on the meaning and translation of the word pen in example 1.

Bar-Hillel’s criticism later led (in the 70’s and 80’s) to acknowledging that general world

knowledge representation and manipulation is an important facet of machine translation,

and Artificial Intelligence (AI) has been recognized as another field of which machine

translation can be considered an application. In opposition to the Chomskyan generative

linguistics view of the time that aimed at drawing a borderline between purely linguistic

semantic knowledge and general world knowledge, research in AI assumed that there was

no such line and that a semantic theory of language must include metalinguistic knowledge.

The paradigm which strongly follows this line today in MT research is the one which has

come to be known as knowledge-based machine translation - KBMT (e.g., Nirenburg et

al., 1992).

9.1.2 MT architectures

Traditionally, MT system architectures are divided between Transfer-based systems,

and Interlingua systems:



In transfer systems, a source language sentence is first parsed into a syntactic (or

syntactico-semantic) internal representation. Next, a transfer is made at both the lexical and

syntactic levels into corresponding structures in the target language. In the third stage, a

complete translation is generated. Two monolingual lexicons and one bilingual dictionary

are needed in a Transfer system: a source-language and target-language lexicons,

specifying basic syntactic and semantic attributes required for morphological analysis,

parsing, and morpho-syntactic generation of the target language (e.g. part of speech,

conjugation forms, basic semantic constraints), and a bilingual transfer dictionary (tailored

for a specific source-target language pairs). In broad terms, the 'transfer' systems may be

further divided into those based on syntactic transfer and those which go 'further' and

incorporate lexical-semantic analysis to help resolve ambiguities in the source-language

representation. In the latter system there is a continuous 'play' between the 'weight' given

for the source text analysis (and disambiguation) and that given to the bilingual

components. In many cases, lack of sufficient analysis and disambiguation in the source

text analysis can be 'covered up' by a sophisticated bilingual transfer dictionary.

In interlingual systems, the source language and the target language are (theoretically)

never in direct contact. Such a system has two clearly distinguished phases: first, source

language analysis, which results in an artificial unambiguous formal representation of the

sentence (such as that of frames or first-order logic). The second stage involves expressing

the meaning (represented by the formal language) using the lexical units and syntactic

constructions of the target language. Interlingua projects fall into two classes: the early

syntactic approaches and those inspired by artificial intelligence. The former approach,

which aimed at developing a universal syntactic structure based on Chomskyan theories of

transformational grammar, was abandoned. The expressive power of the syntactic

representation was found to be insufficient (Hutchins, 1986). The latter approach, which is

based completely on AI techniques, makes use of inference mechanisms which apply



general world knowledge to the source text analysis and representation (see further

discussion in section 9.2.1). The AI-based knowledge-based machine translation approach

mentioned in the previous section belongs to this class of interlingual systems.

While transfer MT systems proved to be more practical and on average produced better

results (e.g., the most successful system to-date is the transfer-based system SYSTRAN,

the oldest commercially available system), interlingual MT systems provide several

theoretical advantages over transfer systems. First, in translating from any one of n

different languages to any of the remaining (n-1) languages, n(n-1) different transfer

modules would ordinarily be required. But, if an intermediate language is implemented,

transfer into each of the n target languages would use only the "universal" language (formal

representation) as input; hence only n encoders from the source languages into the universal

meaning representation and n decoders from the universal meaning representation into the

target languages would be required in a transfer system, which would clearly be much

more economical. The interlingua concept is also an important element in the

modularization of the translation process. Modularization allows work to proceed

independently on each sub-task, and it is usually easier to see the effect of changing or

adding a rule in a modularized system (since the effects are localized to one language).

As Nirenburg et al. (1992:30) observe, the major distinction today between the

interlingua- and transfer- based systems is not so much in the presence or absence of a

bilingual dictionary (direct contact between source and target language) but rather in the

attitude towards comprehensive analysis of meaning, or the depth of source language

analysis. All rule-based MT systems involve a measure of linguistic analysis of the source

language text. The purpose of the analysis is to facilitate the finding of target language

correlates for the various meaning components expressed in the source language through its

lexical units, syntactic constructions and word and sentence order. But while in “transfer”

systems, the transfer of the source text into the target language proceeds directly from the



source text syntactic analysis stage, in interlingual systems some level of semantic

representation of the source text is constructed from which the target text is generated.

Therefore, the debate between interlingual and transfer approaches to MT today is in fact a

debate on the role of meaning representation (in addition to linguistic syntactic

representation) in translation. Interlingua approaches view meaning representation as a

crucial step in the translation process.

It should be noted here that in using the term "interlingual" in defining MT systems,

developers of knowledge-based MT systems today do not necessarily assume the existence

of (or the possibility of defining) a complete “universal language” which can capture all

communicated semantic content. Rather, the aim of knowledge-based "interlingual" MT

systems is to generate “a functionally complete representation of meaning” - a semantic

representation which is “(merely) sufficient for translation to a number of languages, rather

than sufficient for total understanding, which entails a more complete, human-like

inferential process for understanding all implicit and explicit information” (Nirenburg et al.,

1992:27).

The analysis of language processing in this study provides further support for the

interlingual knowledge-based approach to MT by emphasizing the inescapable necessity of

generating some form of independent representation of (partial) semantic content for a

linguistic utterance before translation into the target language can proceed. The analysis in

this dissertation particularly supports the goal of achieving only “functionally complete”

representation of the input text semantics, since a basic assumption in the analysis is that no

one single “meaning” exists for a linguistic structure but rather interpretation can potentially

extend by association nets to theoretically infinite mental domains. For translation

purposes, the “computation” of meaning representation of a source text needs to go only as

far as required by the grammatical constructions, lexicon, and entrenched blending schemas

of the target language.



The analysis in this chapter, however, differs from the conventional techniques

practiced in interlingual MT systems today in that it emphasizes the fundamental need for

extending the linguistic content of the source text before translation into the target language,

rather than (as often practiced in MT systems) just representing the linguistic content of the

input sentence in a language-independent format. As the analysis in this dissertation

suggests (following other studies in cognitive linguistics), language expressions do not

directly reflect objective events and situations in the world, but rather linguistically express

partial aspects of the communicated event, which in turn trigger the reconstruction of

additional semantic content through cognitive operations such as mapping and blending.

Translation (as suggested in chapter 8) proceeds from these elaborated semantic

representations, rather than from the partial information provided in the input text.

9.1.2.1        Corpus-based    (empiricist)       methods 

The MT methods described so far are all rule-based (i.e., they make use of an explicit

set of structured symbolic rules to define the linguistic changes involved in the translation

of a source sentence into another language). The rule-based systems are contrasted with

empiricist systems which recently gained new popularity. In empiricist systems,

knowledge acquisition and processing is based on statistical methods rather than logical

rules. The hope is that whatever knowledge is needed for the NLP system will be derived

by statistical examination of real texts rather than being coded by human experts and

deduced by rules. The assumption is that much linguistic knowledge is acquired and used

by statistical and pattern matching techniques on previous observations 7 .

                                                
7 Note that, from a cognitive point of view, while the statistical linguistics assumption (that much of
linguistic knowledge is acquired by statistical generalizations over previously heard instances) seems
extremely plausible for describing one’s own native language acquisition, the assumption does not seem as
plausible when considering translation performance. Speakers are not typically exposed to large streams of
discourse that is simultaneously translated (and from which translation examples can be extracted and
generalized).



Empiricist MT systems extract the knowledge required for translation from already

translated examples. Two basic methods are distinguished (in neither case is there any

linguistic analysis in the traditional sense of the source text):

1. Example-Based (or Memory-Based) MT - A database of examples (usually aligned

bilingual corpora of human translated text) is used to produce new translations by analogy.

This method was first suggested by Nagao (1984). In the system presented in Sato and

Nagao (1990), the examples are stored as pairs of dependency trees with definition of

correspondence links between the source and target nodes. In the process of translation, the

input is transformed into a dependency tree and matched with (sub)trees in the database.

Using the correspondence links, target dependency trees are created and the target

equivalent is eventually generated.

An appealing feature of the example-based MT method, as Kay et al. (1994:70) note, is

that it can be integrated with a more conventional (rule-based) approach; for instance, the

example database might be invoked for difficult constructions (using pre-defined

translations); in other cases a conventional transfer or interlingua approach could be used.

2. Stochastic MT (statistical model) - In stochastic MT systems, the target sentence is

found by a search for a sentence which is the most likely translation of the source (cf.

Brown et al., 1990, 1991). This view traces back to methods in information theory, which

defines information probabilistically: based on large corpora, probabilities of words are

determined given the context (previous words). The basic idea is to regard the occurrence

of the target text as conditioned by the occurrence of the source text, and to search for best

target text. The algorithm calculates the probability of the source text given various possible

target texts, and aims at maximizing this probability function. Probabilities are calculated in

advance (from large corpora) for the source language and target language independently

(i.e., the probability of a word in a sentence given the previous one or two words), as well

as for target words given a source word (calculated form aligned translated texts). The



search algorithm for the translation begins with partial translations of the source text,

extending them word by word until there is a complete translation which is “more

promising” than any of the other previous candidates.

Corpus-based methods for MT have gained a surprising level of success (relatively to

what was expected from such systems8), but only few MT researchers today believe that

these corpus-based methods will supersede the rule-based methods (cf. Wilks, 1993;

Hutchins, 1995). As Kay et al. (1992:71) note, corpus-based methods fail in dealing with

genuinely ambiguous input (just like traditional methods would with no extra-contextual

considerations): in any given corpus containing sufficient occurrences of an examples with

several possible translations there will probably be some statistical preference for

translating it one way or another. However, the statistically motivated choice will be wrong

a large percentage of the time. The reason, as Kay et al. emphasize, is that the information

telling us how to translate a given input sentence usually lies in the context of its use, and it

is only by examining features of the context that we can find the right translation.

Empiricist MTs may do better by using larger stretches of text (with more context) as the

analogizing unit, but then the task of constructing the analogizing database grows

unmanageable9.

In contrast to the corpus-based approaches discussed above which gained some

                                                
8 Wilks (1993:5) cites a reported (but unpublished) DARPA-supervised test of the IBM MT system
CANDIDE (Brown et al., 1990, 1991) suggesting that the system “did well”, though not as well as the
rule-based system SYSTRAN. In another informal report the IBM group claims to get about 40-50% of the
translations right (but it is not clear how this number is calculated). It should be noted though that the IBM
system is not purely statistical anymore (i.e., it incorporates some “rule-based” linguistic knowledge
structures, such as morphology tables, and some use of bilingual dictionary (Wilks, 1993).

9 Kay et al. (1994) summarize the state of empiricist MT research as follows: “the basic
problem with analogizing (empiricists, N.M.) approaches is not that they cannot be improved.
They clearly can. It is that improving the fidelity of the statistical or example model only
promises marginal improvement in the overall performance of a system. There will always be
significant problems that fall outside the system’s reach (due to non-local context problems,
N.M.)” (p.72).



success, no real successful connectionist MT research has been reported so far.

Connectionism has up to now been used in NLP mainly for parsing and lexical

disambiguation. In disambiguation by networks, the activation of a node by an input causes

the activation of those other nodes in the network to which the first node is connected. An

ambiguous word activates nodes corresponding to all possible senses. If the correct

meaning was pre-activated by previously identified concepts, the correct node has a greater

activation potential than its ‘competitors’. In this way, the wrong interpretation can be

eliminated (Cottrell, 1989). The same principle has been used for syntactic analysis:

dependency constraints may be represented as excitatory or inhibitory links between nodes

(Waltz & Pollack 1985). Kay et al. (1994, p.79) conclude a short discussion of

Connectionism and MT suggesting that “the greatest realm of promise for connectionist

processing lies in accounting for preferences”, such as preferences between different

parsing options of a sentence or readings of an ambiguous word (the choices can be learned

in advance with some sort of connectionist weighting scheme). Kay et al. also note that this

kind of associative weighting can proceed in parallel with conventional linguistic

processing.

Some recent papers report on hybrid approaches to MT where statistical methods are

integrated with traditional AI methods to “fill knowledge gaps until better knowledge bases

or linguistic theories arrive” (Knight et al., 1994, p. 134; see also Chang & Su, 1993).

Most researchers in the MT field believe that future MT systems will be hybrid, “selecting

the best and most effective aspects from both rule-based and corpus-based methods”

(Hutchins, 1995:xx; see also Wilks, 1993).

9.1.3 Linguistic problems in the development of MT systems

In this section, I briefly summarize the main types of linguistic problems that

developers of MT systems have faced, as reported in the literature.



MT systems, as was noted before, differ mainly in the depth of source text analysis

they perform before attempting to generate the target text. An extreme example of MT

approach with the least source text analysis is the “Direct Lexical Transfer MT” approach.

Lexical Transfer systems attempt to take the most direct route from a sentence in the source

language to its equivalent in the target language. That route is determined essentially by two

processes: replacement and adjustment. Such a (minimal) system may consist of: (i) a

bilingual dictionary that provides potential replacements for each word in the source

language; (ii) rules for choosing the correct replacements; and (iii) rules of adjustment for

putting words in the right order in the target language, adding or deleting words where

necessary, etc.

In order to choose the correct replacement for each word in the source language,

Lexical Transfer systems require, however, the extraction of syntactic information from the

sentence to resolve lexical ambiguities. The following examples display the need for

linguistic contextual information (examples from Lehrberger and Bourbeau, 1989):

(i)      Homography    : when a word belongs to more than one part of speech (this is very

common in English as most nouns in English also function as verbs with no change in

morphology). In such cases, the lexical form itself may not be enough to define the right

translation. Information about the syntactic environment can help in choosing the right part-

of-speech.  

(ii)     Complex      constituents  when the translation can be obtained only for a whole

sequence of lexical items and not by translating each word separately. This is very

common, for example, when translating verb and post-particles, as in 2:

 (2)     English                 French     

    pick up       ramasser

     shake up      agiter

Entering the whole sequence (e.g., ‘pick up’) as a single entry to the transfer rules in

the system will not solve the problem since the constituents of the sequence may be



separated from each other in the sentence (but still translated as one unit), as in 3b:

(3)     English                                                 French         

(a) John picked up the coin.     John ramassa la pièce.

    (b) John picked the coin up.    John ramassa la pièce.  

Just searching for the different components (i.e., pick and up) distributed in the

sentence is not enough either, since the components may in fact belong to different sub-

clauses, as in 4 below:

(4)      English      : He picked a fight with the guy up the street.

         French     : Il en vint aux coups avec le gars de l'autre bout de la rue.

It is only through syntactic analysis of the whole sentence that complex constituents can

be identified as a single unit for translation.

Syntactic analysis is required not only to identify the “basic units” for translation, but

also to decide on the particular interpretation (and hence translation) of word sequences, as

in examples (5-6) below. In 5-6, the semantic properties of the syntactic object define the

translation:

(5)     English     : She turned on the light.

    French     : Elle a allume la lumière.

(6)     English     : She turned on the gas.

    French:   Elle a ouvert le gaz.

An additional problem that occurs in lexical transfer systems (with no syntactic

analysis) is a problem of duplication of transfer rules: if the contextual constraints are

defined in terms of the actual positions of the elements in the sentence, then the system

developer must, for example, state twice each translation constraint for a verb and its

arguments once for the active form and once for the passive form.

Probably in all rule-based MT systems today (but not corpus-based systems), the first

stage of translation is source text syntactic analysis - the determination (and possible

"regularization") of the sentence structure. This stage was also historically the first to be

developed by computational linguists.



Syntactic analysis, however, involves additional problems of disambiguation. To solve

syntactic ambiguities, MT system developers make use of lexical-semantic properties (also

referred to as selectional restrictions). Consider the following example (from Grishman,

1986):

(6) I noticed a man on the road wearing a hat.

Sentence 6 has two syntactic analyses and correspondingly two semantic

representations (one with the man wearing the hat and the other with the road wearing it). If

we can determine that 'the road is wearing the hat' is meaningless, we can exclude that

reading and home in on the other. This is done by coding (in advance) a “selectional

restriction” on the predicate wear that its agent must be human (note that selectional

restrictions, while helping in restricting the number of syntactic analyses for an input

sentence, also prevent the system from accepting metaphorical utterances).

For the purpose of MT, many syntactic ambiguities need not be resolved because they

can be preserved in the target text as well. Consider the following example 7. The example

involves syntactic (and semantic) ambiguity in English (regarding the attachment of the

prepositional phrase). The prepositional ambiguity can be preserved in the French

translation because both prepositional meanings, the “possession” meaning attached to the

'woman’ ('a woman with..’) and the “instrumental” meaning attached to the verb (‘see

with...’) can be rendered by the same preposition in the same syntactic location in English

and French.

(7)      English     : I saw a woman on the hill with a telescope.

     French    : J’ai vu une femme sur la colline avec un telescope.

However, if sentence 7 is translated into Russian, for example, the ambiguity must be

resolved since Russian expresses each prepositional meaning differently (Nirenburg et al.,

1992:27) .

Few MT systems deal with source text analysis problems beyond syntactic analysis and



the use of selectional restrictions for disambiguation. Nirenburg et al. (1992:21-25) discuss

additional problems in source text analysis which influence the quality of the translation.

These problems go beyond syntactic disambiguation and attachment of lexical-semantic

properties to syntactic elements and into the realm of what is traditionally considered

“pragmatic” information:

(i)     Anaphora      resolution    : Pronouns like ‘it’ in English are translated differently (in many

languages) when they refer to a male or a female. An MT system therefore must assign a

particular reference to pronouns in order to choose their correct translation.

(ii)     Ellipsis   : it is very often the case that elliptical fragments must be translated in full in

the target language (and hence must be recovered in the source text).

(iii)      Metaphor      and       metonymy       understanding    : Nirenburg et al. (1992) refer to work by

Lakoff and colleagues demonstrating that metaphors are not reserved for poetic texts but are

prevalent in everyday language. Nirenburg et al. note that an MT system must know (p.25)

"whether the systems of metaphorical comparisons among languages are similar and

whether they can be translated directly” (see also discussion in section 8.4.6 of this

dissertation).

Problems in translation also arise from “mismatches” between the source and target

language lexicons (see section 8.1.4). For example, the verb run in English can be used

with different subjects to express different extensions of the prototype sense of ‘run’. In

other languages, each sense will be translated differently (i.e., the equivalent of ‘run’ in the

target language may not be extended in a similar way as in English). The following

examples are from Larosn (1984:7):

(8)     English          Spanish     

The boy runs El nino corre (runs)

The motor runs El motor funciona (functions)

The clock runs El reloj anda (walks)

His nose runs Su narriz chorrea (drips)



The problem for the MT system developer is, of course, in defining in advance a list of

all possible uses of the word ‘run’ and its various translations, and identifying the right

context for each translation. The experience shows that once a list is constructed, a new use

comes up which requires a completely different translation. This is because people

creatively extend the meaning of words all the time, and it is of course a deep problem for a

computer to recognize such novel extensions, and even worse, to translate them (see

further discussion in this chapter).

The deepest problem for MT occurs when the translation must take into account the

general context beyond the linguistic text - i.e., the situation in which the text was uttered,

the intended audience and the culture. Melby (1995) gives as an example the translation of

the English expression thank you into Japanese. There are several translations and they

depend on factors such as whether the person being thanked was obligated to perform the

service and how much effort was involved. Even for a human (non-Japanese), it takes

substantial effort to learn these distinctions. For a computer, it is impossible to learn.

Nagao (1989) similarly discusses the many words of respect and politeness in Japanese

which reflect the social position of the speakers, but are hardly used in European

languages. Even when these factors are not explicitly expressed in the source European

language, they must be inferable from the context and from the psychological state of the

speaker, when translated into Japanese.

In the coming sections, I will discuss the problem of translating instances of English

Caused-Motion sentences (analyzed in chapter 8) within rule-based MT systems. Note that

the translation of the English caused-motion sentences in chapter 8 does not pose any of the

classical translation problems discussed above: the sentences are simple to parse and do not

involve syntactic ambiguity (of course, if the system does not recognize the existence of a

Caused-Motion syntactic construction, as suggested by Goldberg, 1995, then parsing

difficulties will arise when the system encounter intransitive verbs such as ‘sneeze’ or



‘laugh’ occurring with a direct object. However, this problem can be easily fixed by

encoding a special rule in the system to deal with this construction. Once such a rule is

encoded, the parsing of the examples is quite straightforward.). The translation of the

English Caused-motion examples in chapter 8 also does not involve lexical ambiguity of

individual lexical items (for example, in the sentence Frank sneezed the napkin off the

table, the information associated with each lexical item in the sentence, and its translation,

is the default one. That is ‘sneeze’ refers to the default act of ‘sneezing’, ‘napkin’ refers to

a prototypical napkin, and so on...). Finally, the translation of English caused-motion

sentences into Hebrew or French is not a function of cultural differences: most of the

translation examples discussed in chapter 8 communicate everyday events which are

culture-independent.

The problem of translating the English caused-motion sentences analyzed in chapter 8 is

rather the outcome of the creative linguistic combination (or blending) of conventional

lexical items and syntactic forms. The problem posed to the (computational) translator

results first of all from the need to reconstruct the novel (creative) linguistic blend

performed by the speaker. Furthermore, the translator needs to infer additional knowledge

necessary for translation but not provided in the source text (or in its larger textual context

for that matter). And finally, the translator must blend again the constructed complex

semantic structure into a basic clause construction in the target language (rather than directly

transferring linguistic units from the source text into corresponding expressions in the

target language). In the next section, I will discuss the extent to which current

methodologies of MT can deal with these type of cognitive-linguistic operations.

9.2 Implications of grammatical blending for semantic analysis in

rule-based MT

In this section, I proceed to the core discussion of the chapter: the use and manipulation



of encoded world knowledge structures for semantic analysis and translation in MT

systems. I will suggest that current prevalent methods in NLP for manipulating world-

knowledge and semantic structures are not equipped to deal with linguistic blends of the

type presented in this dissertation. I will start by discussing approaches to semantic

representation in rule-based MT systems.

9.2.1 Meaning representation in NLP

Katz & Fodor (1963) initiated a tradition in Linguistics, Philosophy, and later in AI of

semantics as manipulation of semantic markers attached to lexical items. This semantic

theory posited binary markers (such as, +/- human, male, animal) that would be used to

build the possible senses of every word. To decide the meaning of any word in a given

sentence, a postulated body of rules would describe how these markers could permissibly

interact in non-anomalous sentences. Semantic markers combined with syntactic markers

and rules of combination would provide us with the meaning of a sentence. Though this

approach has been frequently attacked, it is still very influential in the AI/NLP community;

Being able to implement semantics using a limited number of markers is computationally

very attractive.

The initial idea of binary markers was expanded to slots and frames (Minsky, 1975) in

the Artificial Intelligence (AI) community. Instead of simply possessing a marker, each

lexical entity could contain slots in which were found either a value, a pointer to a default

value, or a procedure that supplies the missing value. Hayes (1985) suggested that frame

representations could be seen as a new syntax for first-order logic: the frame is a bundle of

properties which are instantiated in particular individuals and situations. Each frame

instance denotes the individual and each slot denotes a relation which may hold between

that individual and some other individuals. Rather than storing assertions in a clausal form,

they can now be stored in frames.



 Schank (1975, 1977) combined the slots and frames idea with the linguistic tradition of

case grammars (Fillmore, 1968) in what he calls Conceptual Dependencies (CD). In the CD

semantic representation, verbs are described by semantic primitives (e.g., transfer (physical

or mental), move, speak, build). Case relations with different nouns (that could be agents,

patients, instruments, locatives, and so on) are marked for the verbal primitives. The CD

representations were used to choose word senses, and represent scripts or stereotypical

sequences of actions (Schank & Abelson, 1977)10. The text analysis was done mainly by

filling up CD structures.

In Schank’s theory a predetermined set of possible relations (conceptual rules) is used

to predict conceptual items implicit in a sentence. The language analyzer ('conceptual

analyzer') makes use of skeletal semantic structures to guide the analysis. These skeletons

specify the primitive actions and the type of objects involved, and have places for filling in

specific instances of objects involved in a particular event. NLP systems developed by

Schank were based on semantic-driven analysis. In opposition to the linguistic approach,

where there are two levels of representation - syntactic and semantic - and constraints on

acceptable structures at each level, Schank suggested that since our ultimate objective is the

generation of a semantic representation of the sentence, we should do so directly, and use

semantic constraints to guide the process. Schank's system analyzes the text directly into

semantic structures, called Conceptual Dependency networks.

The strongest argument of those advocating semantics-driven syntax analysis has been

the ability of people to interpret sentences from semantic clues in the face of syntactic errors

or missing information (as in he go movies yesterday). The early analyzers developed by

                                                
10 The scripts are frame-like structures for representing typical or expected sequences of events. A well
known example of a script is the RESTAURANT script, which details the sequence of events and expected
behaviors when going to a restaurant (i.e., entering, being seated at a table, being shown a menu, ordering
from a waiter, etc.).



Schank and his students begin by identifying the 'main noun' and 'main verb' of the

sentence and building an incomplete semantic structure. The sentence is then searched for

words of the proper class to complete this structure. This approach should therefore be able

to handle ungrammatical sentences which would cause a syntactic analyzer to fail. The

semantic-driven analysis, however, also had many difficulties: First, the merging of syntax

and semantics made it difficult to capture syntactic generalizations, such as the relation of

active and passive forms. Second, analyzing complex sentences, particularly those

involving conjunctions and comparatives, with a semantic analyzer is very complicated

without some syntactic guidance. Finally, the identification of semantic primitives for

semantics-driven systems is extremely problematic and it is not known whether such

systems can remain stable with large vocabularies containing several thousand lexical

entries11 .

Today, almost all MT systems start their processing of input sentences with syntactic

analysis12. Semantic properties and frame-like “world-knowledge” structures are typically

used to guide the syntactic parsing process mainly, and (in some systems) also to build

some level of semantic representation for input texts. The central debate today is between

those linking semantic information directly to lexical items, and those who advocate a

distinction between what is considered to be linguistic knowledge (associated with the

lexical items in each language), and extra-linguistic (“common-sense”) world knowledge

                                                
11  Many linguists and philosophers have argued that the existence of a set of truly universal primitives is
unlikely. The problem is deciding which concepts are the “primitive” ones, if any exists at all (for a
discussion of some of the arguments for and against semantic primitives, see Y. Wilks, 1987).

12 Many models of syntactic formalisms have been explored in NLP research, including Transformational
Generative Grammar, Categorial Grammar, Lexical-Functional Grammar, and Head-Driven Phrase Structure
Grammar.



which is defined independently of any language13. The latter type of knowledge (common-

sense language-independent knowledge) is often referred to in the MT literature as

ontological knowledge (cf. Carbonell, 1978; Wilks, 1979; Nirenburg et al., 1992, 1995;

Dorr, 1993).

Schank’s basic idea of frame-based semantics plays an important role in the

computational representation of ontological knowledge. The ontology first provides “a

uniform definition of basic semantic categories, such as objects, event-types, relations,

properties, and episodes that become the building blocks for descriptions of particular

domains” (Nirenburg et al., 1992:69). These categories are used to define “what ‘concepts’

exist in the world and how they relate to each other” (Mahesh, 1996:5)14. In some systems,

event-type definitions are also used “to encode past experiences, both actually perceived

and reported” (Nirenburg et al., 1992:71), in the form of episodes (units of knowledge that

encapsulate particular ‘remembered’ instances of events and objects)15 . In a (“knowledge-

based”) MT system, the ontological knowledge is used to guide all levels of “linguistic”

procesing: lexical, syntactic, semantic, and pragmatic processing of both source text

                                                
13 Nirenburg et al. (1992), the developers of the Mikrokosmos knowledge-based MT project, note however
that while proposals about the content of lexical semantic properties generally avoid the concept of
language-neutral knowledge , they nevertheless “introduce elements of metalinguistic apparatus [in their
proposals] which play the same role as ontology [i.e., general world knowledge]” (p.7).

14 Mahesh (1996) describes in some detail the construction of an ontology for the Mikrokosmos
knowledge-based MT system developed at the NMSU Computer Research Laboratory. The ontology of
Mikrokosmos is a directed graph where the nodes are the “concepts” (here marked in capital letters). The
“concept” is the ‘primitive’ computational symbol with well defined attributes and relationships with other
concepts. Links between nodes are represented as slots and fillers. Slot names themselves are concepts of
the class PROPERTY. PROPERTYs are of two types: RELATIONs and ATTRIBUTEs. RELATIONs
map an OBJECT or EVENT to another OBJECT or EVENT while ATTRIBUTEs map an OBJECT or an
EVENT to a scalar or literal symbol. The ‘slot’ is the fundamental “meta-ontological” predicate. Each slot
has several “facets”: range of values (fillers), default value, salience in the entire concept, and more.

15 The ontology and episodes are sometimes discussed as two different types of memory: semantic and
episodic. For convenience, I will refer to the encoding of both types of knowledge by the term “background
world-knowledge” or “ontology”.



analysis and target text generation (Nirenburg et al., 1992)16.

Representing and manipulating ontologies is one of the outstanding research questions

of the entire discipline of AI. Leaving aside the problem of scale and cost, the concept of

ontology in AI has been criticized on the ground of irreproducibility (based on the claim

that no two people would be able to agree on what any particular node or path in the

ontology hierarchical structure should look like), and on the basis of cultural-dependency

(i.e., that the way an ontology is built necessarily reflects the world-view behind one

dominant language). As Nirenburg (1992:70) notes, “Even today, this area of scientific

research [constructing ontologies] remains to a large degree, as it has been over 2,500

years, within the purview of philosophy”17.

My interest in this chapter, however, is not in the feasibility of constructing

computational ontologies. Rather, I assume for the moment that a complete ontology is

available in some form to the language-processing (computational) agent. The question I

will ponder in the next section is the following: given a computational system which

                                                
16 Mahesh (1996:41) mentions however that the Mikrokosmos ontology concepts are used to “represent
linguistic meaning rather than to make elaborate inferences or carry out non linguistic action”. Based on
this distinction, the Mikrokosmos ontology does not include “prototypical episodic and procedural
knowledge”.
     The translation examples discussed in this thesis suggest that episodic and procedural information is an
integral part of translation. The analysis in this thesis and others (e.g., Nunberg, 1995) suggest that no
clear border line can be put between “lexical semantic” knowledge and general (encyclopedic) world
knowledge. I will return to this point later in the discussion.

17 An important question regarding the representation of world knowledge is what type of information
should be stored. For example, findings in studies on spatial prepositions and their representation (e.g.
Herskovits, 1982; Vandeloise, 1991) point to the fact that world knowledge-bases should not necessarily
reflect a “valid” or “logical” view of the real world. Rather they should represent the prototypical
conceptualization of the world, as reflected in the way people speak. Herskovits (1982) who investigated
English spatial expressions found out that “our words often describe mental maps, which are made of lines
and points approximating the canonical view of the world” (p.64). According to Lakoff (1982) the central
aspect of our language is experiential: mental imagery, memory, and gestalt perception, all have to do with
“human interaction with and functioning in the world, rather than with objective properties of the world” (p.
22). It is probably this experiential information that has to be coded as “common-sense” knowledge (see
also Mandelblit, 1992, on the translation of spatial prepositions).
     Note however that for the purposes of constructing an NLP system, the psychological reality of the
ontology, or its correspondence to mental structures in the human mind is not of interest (for NLP
purposes, the ontology is just a working tool to provide better performance).



represents knowledge about the world in some form, how would the system manipulate

this information to construct the representational structures required for language

processing (and, in particular, translation)?

9.2.2  Manipulation of general knowledge structures for constructing

semantic representation of texts

 Nirenburg et al. (1992:73) describe the role of the ontology in the process of

constructing a semantic representation for input texts18 :

                                                
18 This quotation refers only to the representation of “textual” (T) meaning (or semantics). Nirenburg et al.
also discuss in their manuscript the representation of the speaker’s goals (G) and the setting (S) of the
communication situation as part of the text’s meaning. The text meaning is “a triad SM = {T, G, S}”
(1992:75).



During analysis, ontological structures are instantiated in
working memory that capture the actual knowledge necessary
to “understand” a text or to produce a text or a turn in a
dialogue. We believe there is a well-defined set of
knowledge elements whose existence constitutes a necessary
and sufficient condition for a text to be considered
understood... Basically, we represent the semantic content
of natural language utterances by instantiating ontological
entities or reasserting remembered instances of such
entities that are found...to be the most closely
semantically related to lexical units in the input.

How are linguistic and ontological strucutres manipulated to construct semantic

representation of texts? Looking at the general NLP literature, we find that rule-based NLP

(and AI in general) basically studies only one type of knowledge manipulation: reasoning

from general knowledge to specific cases, or what is generally referred to as common sense

reasoning. The discussion is confined to restricted circumstances where logical inferencing

can take place; i.e. reasoning that involves premises and conclusions, and is based on laws

of logic. Understanding a sentence, in this view, is finding a way to make it true. Semantic

representations are assigned to the parts of a given sentence, so that given the ontology (or

model), one can tell whether the sentence is true in that model. The paradigm cases used for

inferencing are deduction, induction, and abduction19.

Note that there is an important implicit assumption underlying the logical reasoning

manipulation of knowledge employed in NLP systems: the assumption that there is a set of

rules and world-knowledge frames that if comprehensive enough can predict and give a

model to all future language generation and understanding via processes of logical

inferencing. In other words, the assumption is that the ‘mental’ structures that represent the

interpretation of any text either exist as such in the system in advance, or can be derived by

                                                
19 Kay et al. ( 1994) describe these three forms of inferencing: In deduction, from (√x)p(x)-> q(x) and p(A),
one concludes q(A), In induction, from p(A) and q(A), or more likely, from a number of instances of p(A)
and q(A), one concludes (√x)p(x)-> q(x). Abduction is the third possibility. From (√x)p(x)-> q(x) and q(A),
one concludes p(A). That is, q(A) is seen as observable evidence, where (√x)p(x)-> q(x) is a general principle
that explains q(A)’s occurrence, and p(A) is the inferred underlying cause or explanation of q(A).



logical inference rules from other structures in the system.

The point I would like to make in this section is that the basic mechanisms of semantic

processing discussed above - i.e., the construction of semantic representation of input texts

by directly instantiating the semantics of the linguistic structures in ontological frames (or

their logical derivations) cannot support all forms of language processing. In particular, the

semantic content of linguistic utterances such as the "blends" discussed in this dissertation

is not prototypically a direct instantiation of any individual ontological structure (or its

logical derivation), but rather an “instantiation” of partial information from several

independent ontological structures linked (or integrated) together by unpredictable

analogical mappings. In the next section, I will discuss as an example the construction of

semantic representation for English Caused-Motion sentences.

9.2.3  Constructing semantic representation from ontological frames for

English Caused-Motion Sentences.

Consider the following input text to an NLP system:

(9) The audience laughed the actor off the stage.

In chapter 2, the linguistic and conceptual blending processes underlying in the

generation of sentence 9 were discussed (Following Fauconnier & Turner, 1996): various

linguistic structures (lexical forms and grammatical constructions which conventionally

represent events and relations in the world) are integrated and form a temporary structure -

the ‘blend’20. The ‘blend’ is reflected in the actual utterance in the language and is the input

for an NLP system to analyze. Given an input text such as 9, from the point of view of

NLP system developers, the question is: which ontological knowledge frames need to be

encoded in the system in advance and how these structures are to be retrieved to provide a

                                                
20 By ‘temporary’, I refer to the fact that the linguistic blend is often created for the purpose of only one
text or even one sentence.



correct semantic model for sentence 9?

Note that in NLP systems the semantic representation of clauses is typically constructed

as a representation of predicates and their arguments (corresponding to the sentence' main

verb and nominal phrases). Semantic analyzers typically begin by identifying the main verb

of the sentence and retrieving an ontological frame that represents the “semantic predicate”

associated with the verb (the ontological frames are linked to verbs in the lexicon). In the

ontological frame, “case relations” (agents, patients, instruments, locatives, and so on) are

marked for the predicate. The semantic processing of the sentence involves the attachment

(or "linking") of nominal and adverbial components in the sentence to the “case relations”

slots in the ontological frame. In discussing possible ontological frames to represent the

semantics of input sentences in this section, I will therefore focus on ontological frames to

be retrieved by the sentences' main verbs (e.g., the verb laugh in example 9).

One option for constructing a semantic representation for input sentence 9 based on

ontological frames is to have in the ontology a single frame which represents a single

conceptual predicate meaning “cause to move by laughter” (I would term this frame

LAUGH-CM). Note that this is an acceptable option if we base the construction of the

ontology and its links to the on-line English lexicon on conventional (paper) English

dictionaries. The Webster ninth Collegiate Dictionary, for example, defines one of the

senses of the English verb ‘laugh’ (in its transitive use) as “to influence or move by a

laughter”. The frame LAUGH-CM would then include several slots for the various nominal

participants (“case relations”) associated with the predicate: an agent, a moving patient, and

a source/goal location. Linking rules would attach the linguistic nominal arguments of the

verb laugh in the input sentence 9 to participant slots in the ontological frame (i.e., the

subject would be linked to the agent slot, the object to the patient or theme slot, and so

on...). The frame representation for LAUGH-CM would look something like Figure 9-1



below 21. Each filler may itself be an ontological frame or a ‘literal’ value (numerical or

alphabetical). In brackets are the "fillers" for the frame LAUGH-CM for input sentence 9.

LAUGH  -            C M               Def:        “A        move         P       (from        S      to         G)      by       laughter      ”

Agent (A): (audience)

Patient (P): (actor)

Source (S): (stage)

Goal (G): ....

Figure 9-1: A frame-type representation for the predicate LAUGH-CM.

Note that the frame in Figure 9-1 represents, in fact, a conceptual integration of the sort

argued for in chapter 2. That is, a sequence of events in the real world (i.e., Agent laughs,

Patient moves) is defined as a single integrated ontological concept. The structure of the

frame (i.e., the case relations associated with the predicate, and the mapping of grammatical

roles to semantic case relations) is the same as the ones for caused-motion concepts such as

THROW or PUSH (the concepts associated with the English lexical items throw and push).

The problem with this approach is, of course, that it cannot account for creative non-

entrenched instances of the English Caused-Motion construction (i.e., creative linguistic

integration of conceived caused-motion event sequences into a single linguistic

construction), as in 10:

(10) Frank sneezed the napkin off the table.

Clearly, we cannot expect an ontology in an NLP system (however rich and detailed it

is) to include a single frame representation for the integrated caused-motion semantics of

sentence 10 (i.e., a frame which represents a predicate with the semantics of “to move by

sneezing”). If we do, then we must define in the ontology a second frame for every non-

stative verb V in English, with the semantics of “to influence or move by V” (since each

                                                
21 The representation format in Figure 9-1 is a simplification of figures such as the ones found in
Nirenburg et al. (1992) or Mahesh (1996). Their format is based on the FRAMEKIT knowledge
representation system (Carbonell and Joseph, 1985).



non-stative verb in English can potentially be integrated into a CM syntactic structure to

represent a caused-motion event sequence, as the study by Goldberg, 1995, suggests).

Another option would be to construct a representation of the semantics of sentences 9

or 10 as instantiations of a more generic frame in the ontology, representing the generic

event structure of CAUSED-MOTION (i.e., a frame representing a generic recurring event

sequence in the world of 'an Agent acting and thereby causing a Patient to move'). The

event that the frame represents would be associated with the same “case relations” as the

frame LAUGH-CM (Figure 9-1), but it would include an additional slot identifying the

particular type of activity involved in each instantiation of the frame (e.g., ‘laughing' vs.

‘sneezing’ in 9-10). Figure 9-2 provides a schematic illustration of the frame CAUSED-

MOTION22:

CAUSED  -              MOTION                       Def:      “A      causes       P        to         move      by         means      of         act        Ac        ”    

Act (Ac): (laugh / sneeze)

Agent (A): (audience / he)

Patient (P): (actor / napkin)

Source (S): (stage / table)

Goal (G): ....

Figure 9-2: A frame-type representation of CAUSED-MOTION events.

Note that the grammatical linguistic encoding of a caused-motion event in English (in a

single clause structure with a single verb) cognitively motivates the representation of this

category of events as an independent ontological frame ("concept"), rather than, say, as a

complex combination of several frames representing the different sub-events in the macro

caused-motion event). Note also that from a pragmatic computational point of view, the

                                                
22 The semantic representation of the concept “caused-motion” in Figure 9-2) is clearly partial. For
example, as the Caused-Motion syntactic construction in English reveals, the direction of motion (up,
down, into...) is a salient aspect of the caused-motion event (in language and probably in conceptual
perception as well), and should therefore be an integral part of the semantic/conceptual representation of
caused-motion events in the ontology.



latter representational option (Figure 9-2) is more efficient than the earlier one (Figure 9-1).

That is, rather than constructing (in the ontology) two frames for each non-stative verb in

English such as laugh or sneeze -- one for the causative sense and one for the non-causative

‘basic’ sense of the verb -- the causative sense can be derived from the frame representing

the non-causative sense plus the generic frame of CAUSED-MOTION. In analyzing English

sentences, the CAUSED-MOTION frame (Figure 9-2) will be triggered by the syntactic

pattern of the English input sentence [NP V NP directional-PP], and the main verb will

identify the particular ‘type’ of activity involved in the generic event structure of caused-

motion.

The problem, however, is that for the purpose of translation, for example, the semantic

representation of English Caused-Motion sentences as an instantiation of the ontological

frame in Figure 9-2 is insufficient (i.e., is not “functionally complete”). As the discussion

of English CM sentences (in chapter 2) and their translation into Hebrew and French (in

chapter 8) suggests, the main verb in the English Caused-Motion construction (represented

by the generic ‘activity’ slot in the frame in Figure 9-2) may refer to different sub-events

within the conceived caused-motion macro-event, and which sub-event the verb refers to

defines the translation strategy into the target language (i.e., the choice of the integrating

syntactic construction and lexical items in the target language, see discussion in chapter 8).

Moreover, as the analysis in chapter 8 suggests, what the main verb in the English caused-

motion sentence refers to also defines what essential information is missing from the source

sentence linguistic structure, information that is essential for successful translation. For

example, if the verb in the caused-motion sentence depicts the causing sub-event, as is

often the case in English, then for translation purposes into Hebrew and French, as well as

into many other languages, the effected motion event must be inferred, since this latter

aspect of the event is the one most commonly highlighted by the constructions of the target

languages (see section 8.4.1).



Therefore, for the purpose of translation, the “interlingual” semantic representation of

English Caused-Motion sentences must first be extended to distinguish between (at least)

three possible predications the main verb in the English caused-motion sentence may denote

(i.e., the agent’s action, the patient’s motion, or the causal link between the two23).

Second, for correct translation of CM sentences into Hebrew and French, the particular

type of effected motion event must typically be represented as well. Figure 9-3 depicts what

would be a “sufficiently complete” representation of the semantics of sentence 10 for

translation purposes into Hebrew and French (below, is the translation of sentence 10 into

Hebrew, as discussed in section 8.4.1):

(10)      English:   Frank sneezed the napkin off the table.

      Hebrew:   Frank hepil(n.f.l-hif’il) et hamapit min hashulchan behitatsho.

Frank fall-hif'ilpast  ACC the-napkin off the-table by-sneezing.

CAUSED  -              MOTION    (extended)                       Def:      “AG       causes(C)        PA        to         move(M)           by         means       of      (AC)"          

Predicate:

Causing Activity (AC): (sneeze)

Effected Motion (M) ( fa l l )

Causal Link (C):

Agent (AG): (Frank)

Patient (PA): (napkin)

Source (S): (table)

Figure 9-3: A (partial) frame semantic representation of the sentence Frank sneezed
the napkin off the table

The problem for computational processing is that the construction of the frame

representation as in Figure 9-3 cannot be derived from other ontological frames in the

system by logical inferencing only (i.e., by operations of induction, deduction, or

                                                
23 The main verb in the Caused-motion construction may also denote other aspects of the event, as
exemplified in Goldberg, 1995, Fauconnier & Tuner, 1996. and in section 8.3.4.5 in this dissertation.



abduction).

First, the frame representation in Figure 9-3 cannot be derived from the generic

CAUSED-MOTION frame (Figure 9-2) because the grammar in English underspecifies the

correct mapping rule between the sentence’s main verb and the three (minimal) optional

“predication” slots in Figure 9-324. Second, the missing information (the manner of motion

of the affected patient) cannot be derived from any single ontological frame (associated with

individual lexical items in the sentence) such as SNEEZE, NAPKIN, or TABLE. Nothing in the

properties of the concept ‘sneeze’ or ‘napkin’ alone suggests that in a caused-motion

sequence, the effect of sneezing on a patient would necessarily be one of ‘falling’ (as in the

representation in Figure 9-3), rather than, say, ‘shifting aside’, or ‘running away’.

Consider for example CM sentence 11, with the same main verb sneeze:

(11)      Eng:         Frank sneezed everyone out of the room.

The effected motion event associated with sentence 11 is probably not one of ‘falling’

but rather of volitional ‘walking’ or ‘running out’,  as reflected in the translation below of

sentence 11 into Hebrew (provided by two Hebrew speakers):

(11a)       Heb:      Frank hivriax(b.r.x-hif’il) et kulam min haxeder bahit'atshuyot shelo.

              Frank run away-hif'iLpast ACC everyone from the-room by-his-

sneezingTo infer the effected type of motion event, in 10 or 11 the language user must infer

a probable causal link between the agent’s action (‘sneezing’) and the motion of the patient.

                                                
24 Note that the semantic properties of the main verb in English caused-motion sentences can often cue the
system as to which aspect of the event the verb depicts (i.e., verbs of motion most probably depict the
patient’s effected motion; otherwise the verb most probably depicts the agent’s causing activity, and so on).
However, these semantic properties are not always sufficient, since the same verb may be used to indicate
either the agent's action, or the object's motion, as exemplified in sentences (i-ii) from Fauconnier and
Turner (1996):

(i)  He trotted the stroller around the park
(ii) The trainer trotted the horse into the stable

In (i), the verb ‘trot’ refers to the causal agent (it is the causal agent who is doing the trotting, and thereby
making the stroller move around the park). In (ii), the verb ‘trot’ refers to the affected patient (it is the horse
trotting into the stable. The trainer could be walking, holding the horse's bridle).



While in 10, it is probably the air displaced by sneezing that physically caused the napkin to

move, in 11 the effected motion is assumed to be volitional and is due to cognitive

(epistemological) decision of the patient rather than the physical causal effect of sneezing.

The different properties of the affected patient and the difference in the implied causal force

suggest different manners of effected motion events in sentences 10 and 11. In other

words, to infer the manner of the effected motion event, as required for translation, a whole

sequence of events must be reconstructed, partial aspects of which link to lexical items in

the linguistic utterance. The MT system, thus, must perform the full "de-integration" and

blending reconstruction operations discussed in the thesis (section 2.4) for generating a

semantic representation of the input sentence which is “sufficiently complete” for

translation. The association of a linguistic utterance (such as 10-11) with a sufficiently

complete semantic representation is therefore clearly not an operation of logical

instantiation. Rather, the input sentence (the linguistic blend) must be linked to fragments

of episodic memory (e.g., memories on the typical motion of light objects like ‘napkins’,

of observed physical effects of ‘sneezing’ on objects around the sneezer, etc.). Each

episodic fragment is encoded separately in the ontology and all are combined together only

temporarily for the specific linguistic blend (input sentence).

Note that the above discussion is also relevant for more frequently observed causal

scenarios (whose integration into a single structure is more entrenched in language and

memory) as in example 9 discussed before:

(9) The audience laughed the actor off the stage.

In the ideal case (i.e., given an ontology as rich as the human memory), what the

ontology might include is a frame in episodic memory representing a full sequence of

events whereby a group of people laugh at another person (or more generally perform some

insulting act towards another person), and the laughter (insult) makes the person leave the

place where the group is located. This general episode is probably common enough to be



encoded in the human mind (i.e., most people have probably encountered such as episode

either by being themselves a ‘victim’ of social insult, or by watching, reading or discussing

such an event and its causal effects). This event may be represented in the ontology as

follows (Figure 9-4):

CAUSED  -              MOTION    -by-insulting                                 Def:        “A        insults        P,      there       by        causes        P      to          move        away"    

Event-1:

Insulting-act (I): (laugh)

Agent (A-I): (audience)

Patient (P-I): (actor)

at-Location: ......

Event-2:

Motion-act (M): (laugh)

Patient (P-M): (actor)

from-Location: ......

to-Location: ......

Figure 9-4: A frame representation of the generic event structure

MOTION-CAUSED-BY-INSULT.

Note however that the episode (or category of episodes) represented in Figure 9-4 may

also be encoded linguistically in many ways, as in “X laughed Y out of Z” or “X made Y

leave Z (by insulting her)”, or “Y ran-away from Z (because of X’s insult)” and so on...

Each linguistic expression of the episode involves a different linguistic blending of the

sequence of events into a different syntactic construction while highlighting and omitting

different aspects of the event (i.e., each integration involves a different mapping

configuration). In other words, even when a whole recurring communicated sequence of

events is already represented as a single frame in the ontology, there is no one well-defined

"instantiation rule" between the frame structure and the linguistic form. The language

interpreter (the NLP system) must still infer the particular mapping configuration involved

in each linguistic blend.



To summarize, the discussion in this section points out that the computational

translation of some basic clause structures (even isolated sentences with no background

cultural or textual consideration) may require (for the very basic “functionally sufficient”

semantic representation of the sentence) not only a detailed episodic memory, but also

sophisticated computational tools to discover the links between the linguistic utterance and

episodic frames in memory. The discovery of these links involves computational

mechanisms which often go beyond simple logical inferencing from general frames to

instantiating events, involving rather the reconstruction of complex mapping patterns from

fragments of episodic memory to the linguistic form, where some aspects of the event are

linguistically represented and others are not explicitly expressed. To provide the right

interpretation for each possible linguistic blend using only methods of logical instantiation

(or inference from general case to particular instances) would involve the encoding of each

possible linguistic integration (blending) from each set of event structure to several

appropriate linguistic structures. This means in fact that all possible blends that can be

generated by human speakers in any time must be encoded (either each one individually, or

for more general categories of very similar events, i.e. events which involve very similar

agents, patients, and interactions). This, of course, is not feasible.

It is important to note here, however, that the discussion in this chapter refers to

translation examples where the linguistic blend underlying the expression of an event in the

source and target languages is different (as dictated by the constraints of the different

grammatical constructions in the two language). While the tenet of this dissertation, as

discussed in chapter 2, is that every linguistic utterance is generated by linguistic blend

(i.e., by the mapping of an event onto an integrating syntactic construction), it is not

always the case that a full reconstruction of the blending configuration is needed for the



purpose of translation, since in many cases the same linguistic blend is conventionally

employed in the source and target languages. In such cases, translation can proceed by

simply replacing lexical items (or sub-clauses) in the source language with their dictionary

equivalents in the target language. The source and target language readers will each

independently reconstruct the full communicated event from the partial information in the

linguistic structure (the source or target sentence).

I suggest that similarities in blending configurations and conventions in the source and

target languages is what enables successful automatic translation (by MT systems) of many

linguistic utterances, and it is also probably what underlies the simplistic engineering view

of translation (discussed in section 9.1.1) as a direct “decoding” process. It is however

important to note that while many sentences can be translated into a target language without

figuring out the complicated mapping between the linguistic structure and

episodic/ontological frames (only because the same mapping configuration is used in both

the source and target language), in other cases reconstruction of the blending operation is

required.

From a practical point of view, the importance of the discussion in this chapter for

current NLP systems is in the way NLP developers treat cases where NLP systems fail to

produce the right output (e.g., cases where direct transfer of linguistic units into the target

language does not produce an acceptable translation). The almost automatic assumption in

such cases is that the failure stems from incomplete knowledge encoded in the system (i.e.,

the linguistic knowledge and algorithms, the ontological frames, or the statistical patterns

retrieved from corpora are assumed to be imprecise or not complete). The reaction of NLP

system developers to failures of the system is thus usually in a modification of the

knowledge structures in the system (too often in ad-hoc fashion) just to discover that

another problem arises in the next round. What the discussion in this chapter suggests is

that the knowledge-bases themselves may be correct and complete, while it is the creative



way these permanent knowledge-structures are integrated (conceptually and linguistically)

that is not captured by the system’s algorithms25.

 In the next section, I will briefly discuss some current research trends in NLP to

extend the power of NLP systems (preventing failures in processing input texts). These

methods focus on the role of lexical properties in defining the semantics (and translation) of

a sentence, and try to cope with failures of the system by enhancing the lexicon with

general sense-extension rules. These methods, however, fail again to acknowledge and

treat the real creative aspect of language processing. While the general rules encoded in

these methods can capture conventional blends (i.e., blends that are entrenched and

repeated in conversation), they are not general enough to account for temporary novel

blends.

9.2.4 Lexical mechanisms in semantic processing.

A large number of recent NLP systems encode semantic information as “lexical-

semantic properties” associated directly with lexical items (rather than in the form of

‘metalinguistic’ ontological knowledge). This follows a general current move in linguistics

theories to attempt to account for all semantic interpretation and surface syntactic structure

through lexical-semantic information encoded in individual lexical items (e.g., Bresnan,

1982; Levin, 1993).

Recent work has increasingly emphasized the “creative” aspects of language use where

word senses can be extended in context in cases such as metonymy (Nunberg, 1978,

1993), and metaphor (Lakoff and Johnson, 1980). These phenomena are often treated in

                                                
25 For example, in the sentence Frank sneezed the napkin off the table, the information associated with each
lexical item in the sentence is probably a default one (that is ‘sneeze’ refers to the default act of ‘sneezing’,
‘napkin’ refers to a prototype napkin, and so on). The novelty of this expression is in the way these default
knowledge structures are linguistically integrated together, and hence related to each other semantically in
the sentence. Modifying the default properties of ‘sneeze’ or ‘napkin’ to provide the correct interpretation
would be only an ad-hoc solution and will not solve the general problem.



computational linguistics literature through lexical mechanisms such as coercion

(Pustejovsky, 1991; Pustejovsky and Boguraev, 1993), and lexical extension rules

(Copestake & Briscoe, 1995). In particular, research has concentrated in recent years on

identifying classes of lexical items (with special reference to verbs) with shared semantic

components, whose syntactic “behavior” can be predicted from the meaning components.

For example, Levin (1993) discusses verbal diathesis alternations - alternations in the

expressions of arguments, accompanied by changes of meaning. The diathesis alternations

are assumed to arise systematically from the verb meaning. Therefore, groups of verbs

which form a semantically coherent class would share the same alternation patterns. Levin

notes, for example, that most verbs of sound emission (e.g., buzz, hiss, rattle, wheeze,

whistle ) allow locative (or directional) alternation, as in 12:

(12) The wind whistled.

The wind whistled round them.

This observed behavior supports a general “sense extension” rule as in 13, which is

accompanied by an alternation in argument structure (i.e., the addition of a locative

prepositional phrase).

(13) Extension Rule:     sound emission V --> motion V

In Copestake (1995) and Ostler et al. (1992), sense extension rules for nouns are

discussed, such as:

(14) (a ) ‘Animal (countable noun) -> Meat (mass noun)’

Marry had a little lamb .

He won’t touch lamb anymore.

(b) ‘Comestible substance -> Conventional portion’

She doesn’t drink beer.

She bought two beers.

(c) 'Container -> Its content’

The bottle broke.

He drank a bottle of Whisky.

Work on other languages suggests that sense extension rules (such as 13-14) are found



cross linguistically, but may differ in the groups of lexical items to which the rules are

applied, and the syntactic and morphological phenomena involved in the alternation. It

follows then that the application of sense extension rules across languages may lead to

translation divergences (or mismatches).

For example, while walk is translated into French as aller (or aller à pied), the phrase

walk across is translated as traverser à pied (i.e. ‘cross by foot’). This "translation

divergence" could be accounted for by extending the sense of walk in English into a sense

of ‘crossing’ (in the context of the adverb across), an extension rule which is not paralleled

in French. In the same spirit, following Talmy’s work on motion event conflation (Talmy,

1985, 1991), the motion semantic component in sentences like the bottle floated into the

cave could be incorporated by extending the semantic properties of the verb float to include

a meaning component of ‘directed motion’. The sense-extension rule will solve the problem

of translating this sentence into “verb-framed” languages (in Talmy’s terms) which

normally express the direction of motion (the ‘path’) in the verb, while information about

manner (‘floating’) is expressed separately (or just omitted). Thus, for example, the fact

that the English sentence the bottle floated into the cave is translated into Spanish (a “verb-

framed” language) as la botella entró a la cueva (‘the bottle entered into the cave’) can be

captured by a sense-extension rule for the verb float (which adds the meaning component

‘directed motion’, and a transfer rule which links the extended sense of float and the verb

entrare in Spanish through the shared meaning component of ‘directed motion’). Another

related solution is proposed by Dorr (1993), in a comprehensive study of a large bulk of

translation divergences. Instead of solving translation divergence problems through sense-

extension rules, Dorr proposes to treat them by identifying general surface-level

distinctions across languages at the level of lexical-semantic structure, and factoring out

these differences in the translation process.

Note that following this line of research, the "translation divergences" discussed in



chapter 8 (translating English Caused-Motion sentences into Hebrew and French) would

also be treated by pre-encoded rules at the lexical level. For example, the “translation

divergence” in 15 (below) may be accounted for by encoding a rule which extends the

sense (or lexical properties) of the English verb blow (or its larger lexical-semantic

category) to a sense of ‘cause-to-move (by-blowing)’, whenever the verb occurs with the

Caused-Motion syntactic argument structure [NP V NP PP]. The extended semantic

structure of blow as the main verb of sentence 15 can then be translated directly into

Hebrew to generate the main verb in the Hebrew target sentence.

(15)      English     : The wind blew the boat off course

      Hebrew      :  Haruax   hesita(n.s.t-hif'il) et hasfina mimaslula.

'The wind shifted the boat off its course'

There are two problems with this approach. One is noted by Goldberg (1995).

Goldberg points out that the theory of Levin and others (e.g., Levin, 1985; Levin &

Rappaport ,1988; and also Pinker, 1989) is forced to claim that a verb such as blow in

English has several different senses (blow1, blow2, ...), one for each use (as in the wind

blew hard vs. the wind blew the ship off course). However, the only evidence for the

different senses of the verb blow is the fact that it occurs in the particular linguistic

configurations given above. The motivation for assigning different senses to the verb is

thus circular (and suggests that we may be dealing with ad-hoc assignment of senses)26 .

The problem with the lexical sense extension approach is even more acute when

considering the translation of English caused-motion sentences into Hebrew. An

underlying motivation in the “lexical sense-extension” line of research is the preservation of

compositionality in semantics and in translation (i.e., that the composition of "meaning

components" in the source text are translated into the target language). But note that for

                                                
26 Goldberg suggests that the different semantics associated with the full clause when the verbs occurs in
different syntactic environments should be attributed to the syntactic constructions themselves rather than to
the verb (see presentation in section 1.2.1).



translation purposes it is not enough to extend the semantics of the verb ‘blow’, when

occurring with the Caused-Motion argument structure, into a general caused-motion sense

(i.e., ‘cause-to-move-by-blowing’). To preserve compositionality in translation, a semantic

component identifying the particular type of motion event has to be incorporated into the

extended semantic structure of blow  as well (as translation into Hebrew suggests, see

examples in section 8.4.1). The problem is again that the particular type of motion involved

cannot be predicted in advance in the pre-encoded sense extension rule for the verb blow. It

is the particular participants involved in every instance of the caused-motion macro-event

that define the type of effected motion. The same verb blow or sneeze occurring with the

same syntactic structure but with different participants instantiating the construction will

evoke different types (manners) of motion (see examples 10-11 in the previous section).

9.3 Conclusions

Melby (1995:48) cites Minsky (1994) who said that one thing which separates current

machines from humans is the flexibility of the human mind. When a computer program

encounters a situation for which it has not been explicitly programmed, it either stops or

produces meaningless results. When humans encounter a new situation, they are often able

to try various solutions until something works. This description fits well the problem of

processing novel linguistic blends: creative blends cannot be programmed in advance.

However, when people encounter a new blend, they are usually able to reconstruct a

possible set of correspondences (a mapping pattern) between the linguistic structure and a

probable sequence of events in the world.

The goal for future research in NLP, I believe, is to take the notion of blending and

linguistic creativity seriously, and conduct basic research to look for ways to

computationally simulate creative blending processes, at least to some extent. The analysis

in this chapter suggests that translation (of even very basic sentence structures) could never



be done accurately enough without incorporation of dynamic cognitive processes such as

mapping, blending and integration of representational structures. So far, we may have

identified only a small part of what is needed to make the modeling of dynamic general

language processing possible, but this is a jumping off point for beginning to build

machines that act more like humans do27.

The discussion in this chapter also points to at least two reasons why MT systems in

their current form can still produce partially successful results without completely

simulating creative blending operations. One reason is that in spite of the immense potential

for flexibility in the generation of linguistic expressions, much of language use is

entrenched and predictable (if not in a deterministic way, then at least statistically), as

suggested by the relative success of statistical NLP systems (section 8.1.2.1). The second

reason is that in translation, it is very often the case that exactly the same linguistic blend

(i.e., a similar integrating construction and a similar mapping pattern) is favored in both the

source and the target languages to express an event. In such cases, the additional semantic

structure imposed on the linguistic blends by human readers is transferred into the target

language without being explicitly expressed in the translation.

In practical terms, the analysis in this chapter makes several points:

(1) That it is a mistake to try and account for every failure of an NLP system to provide

a correct “model” (interpretation) for an input sentence by assuming necessarily that the

permanent knowledge structures in the system are inaccurate and should be modified or

extended. Often the knowledge structures are accurate and complete. The failure of the

system may result from the speaker’s creative integration (blending) of these permanent

                                                
27 I do not intend to claim here that the particular cognitive skills that humans use in language processing
(whatever these skills are) are necessarily the only right ones for an NLP machine to use. However, I do
suggest that NLP systems cannot afford to ignore these type of processes and skills and the cognitive power
they provide.



knowledge structures into new temporary structures.

(2) Pre-encoded inference rules can capture only the most entrenched (repeating)

instances of blending. They cannot solve the core problem of blending. Reconstruction of

blends has to be performed on-line, imitating human cognitive creativity in finding possible

correspondences between linguistic forms and complex events in the world. Finding

correspondences involves abstracting previous encountered events encoded in memory,

and searching for optimal mappings between fragments of retrieved structures and the

information communicated in the linguistic utterance, in a way which complies with the

grammatical blending conventions of the language28.

Even if blending mechanisms cannot be completely automated with current

computational techniques, it is still important to realize which aspects of failures of NLP

systems are due simply to a scale problem (which more powerful computers and better

algorithms can solve), and which are due to the very nature of language processing versus

current computational techniques .

(3) Computationally, the mechanisms of language understanding discussed in this

chapter (such as the de-integration mechanisms) are very different from the traditional AI

logical inference mechanisms. In general, while logical inference rules necessarily have a

single definite outcome, the mechanisms of language interpretation discussed in this

dissertation define only general procedures triggered by various grammatical forms (e.g., a

grammatical form such as the English Caused-Motion construction, or the Hebrew

binyanim, trigger “de-integration” procedures guided by specific constraints), whose actual

                                                
28 Note that the basic problem of perceiving analogies incorporates in itself the problem of simulating
cognitive creativity. Douglas Hofstadter (1995b) points out that most current computational models of
analogy-making erroneously incorporate the structural similarity into the structure of the input domains
beforehand. This form of modeling fails to capture the creative aspect of analogy-making where patterns of
similarity dynamically alter from one context to another. Some models of analogy-making such as
"Copycat" (Mitchell and Hofstadter, 1990, 1993) incorporate some level of dynamic on-line similarity
detection that changes in context (see also the discussion by Holyoak and Barnden, 1994, where they point
that "Copycat" is guided by "soft pressures rather than rigid requirements”, as in rule-based AI systems).



application varies based on the semantic and ontological properties associated with the

particular linguistic instance. In other words, while traditional lexical inference rules (e.g.,

sense extension rules) are in the general form of “if X has property ‘p’ (in context Y) then

add (or replace) property ‘q’ in X”, the mechanisms discussed in this thesis are of the

general form of “if X has property ‘p’ (in context Y) then apply procedure q to X”. The

outcome of applying procedure q to X depends on the semantic properties of X and its

context Y, and thus varies for different instances of X. What guides and constrains these

procedures requires better understanding of human linguistic blending processes.A final

note should be made about the implications of the discussion in this chapter for research on

human-aided Machine Translation. Many recent MT projects have dropped the requirement

that the MT system would be fully automatic, and include instead some form of human-

machine interaction during the process of translation, typically with the computer asking

questions and the human partner answering them. Currently no one has come close to a

successful interaction between human and machine in translation. Particularly, it is not yet

clear what kind of questions should be posed by the system to the human, at what stages of

the translation process, and how would the interaction proceed. The essential idea is for the

NLP system to automatically process the “low-level” simple tasks, but to interact with the

human user in making the more difficult decisions (e.g., syntactic and semantic

disambiguation (Nirenburg et al., 1992). Depending on the approach taken to language

processing and translation, the type of human-machine interaction changes drastically.

The analysis of translation examples in this manuscript suggests that an integral part of

the translation process is the inferring of additional information beyond what is explicitly

provided in the text (i.e., beyond, for example, the disambiguation of explicit linguistic

information). The discussion in this chapter also suggests that this task is currently beyond

the computational power of NLP, since the extra information often cannot be derived

logically by pre-encoded inference rules, but rather involves novel complex manipulation of



existing knowledge structures (through processes of analogy making, mapping, and

integration of partial structures). However, in contrast to NLP systems, human seem to

excel in these types of processes (as evident in the mostly flawless processing of creative

linguistic blends by humans). The straightforward conclusion, is that the part of the

translation process, where extra information must be added to the semantic representation

of a text to enable its correct translation, is especially suited for human intervention.

Pierre Isabelle (1993) notes that within the ‘human-aided MT’ paradigm, “humans have

persistently been asked to do things they would rather not do, ...., like answering odd

questions about phrase bracketing or rearranging bizarre jumbles of target language words”

(p. 202). Rather than tiring human partners with unintelligible machine-like tasks, we

should take advantage of what humans are best at, and what machines are worst at: making

cognitive decisions based on detailed knowledge of prototypical events (episodic memory).

In such a system, it would be the task of the MT system to identify the need to augment a

semantic representation of a text, but it would be the human partner who would actually

provide the additional semantic-pragmatic content (when prompted by the machine).

For example, consider the translation of English caused-motion sentences into Hebrew

or French discussed in chapters 8-9. In symbolic interlingual MT, the system could identify

(based on the syntactic form of the English input sentence, and the novel use of the verb in

the construction) that the input sentence communicates a novel linguistic integration of a

caused-motion event sequence. The MT system would then prompt the human partner for

help. A sophisticated interactive system would also present the human participant with

information extracted from the linguistic structure based on pre-encoded rules (e.g., the

system would identify the agent, moving patient, and the direction of motion in the

communicated caused-motion event). The system would then ask the human partner to

identify a probable “causing” and/or “effected” motion event. The information required

from the human partner could also be guided by information on the type of integrating



linguistic constructions available in the target language, and the particular aspects of events

most commonly encoded via the target language constructions.


