Primate Brains

Cogs 143 * UCSD

Primate brains larger than similar-sized mammal

Brain differences within Primates

Brain differences within Primates

Folliovore

(More omnivorous) Frugivore

Human brains the largest of any primate

Human

Other ape

Human neo-cortex particularly expanded

Human

Chimpanzee

Sensori-Motor Integration

How are sensory inputs processed and integrated with other modalities?

Audition

Inputs to first (Cochlear Nucleus) hindbrain site are Monaural

The rest of the path way is **Binaural**

The rest of the path way is **Binaural**

Primary Projection Area (A1) in Cortex

Auditor cortex

Left ea

Medial geniculate nucleus Inferior colliculus

- Superior olivary nucleus - Cochlear nucleus

Tonotopic (Frequency & Amplitude) Map in A1

Monkey Auditory Cortex

"Higher" Auditory cortex in Humans includes Wernicke's Area for Speech

Vision

Vision

Most connections direct to Forebrain

Retina Mapped in V1

Fovea greatly "magnified" in cortical map

Cross-Over in Visual System

Right visual field Left visual field Temporal Nasal Temporal Optic chiasm Pulvinar nucleus Midbrain's Lateral geniculate division of field Superior colliculus helps orient to center Optic radiation Primary visual cortex

Right Visual Field crosses to Left Brain – Left Visual Field crosses to Right Brain

Two Major Visual Pathways

(Adapted from Zeki, S. M. Journal of Physiology, 1978, 277, 227-244.)

Dorsal ("Where/How") Pathway – For Motion & Depth

Dorsal Pathway – "How"

Dorsal Pathway – "How"

Dorsal Pathway – "How"

Responses of a neuron in a monkey's area IT to various stimuli. This neuron responds best to a full face, as shown by its response to monkey and human faces in the top two records. Removing the eyes or presenting a caricature of a face reduces the response. This neuron does not respond to a random arrangement of lines. (From Bruce, Desimone, & Gross, 1981.)

(Adapted from Zeki, S. M. Journal of Physiology, 1978, 277, 227–244.)

Superior Temporal Sulcus (STS) – Biological Motion

Somatosensory

Tactile Sensitivity, esp Face & Hands

Topological Map w/Magnification

Frontal (Motor) Cortex

Pre-Central Gyrus

Primary Motor Cortex

Mirror Cell System

Mirror Cell System

In both Parietal (PF) and Premotor (F5) areas

Mirror Cell System – Observational Learning?

Some areas mediating social cognition...

Limbic System

limbus) around the brainstem

Limbic System – The "Nose Brain"

Some areas implicated in "Theory of Mind"

Figure 4.10 The limbic system is a set of subcortical structures that form a border (or limbus) around the brain stem

Frontal Insula

Von Economo Cells

Typical Pyramidal Cell

In primates, <u>only</u> in the (large brained) Apes & Humans

Von Economo or "Spindle" Cell

Figure 4.10 The limbic system is a set of subcortical structures that form a border (or limbus) around the brain stem

Stay tuned...

