Social Complexity

- In Primates, the shift from solitary nocturnal Prosimians to social diurnal Anthropoids led to feeding in groups
- In Cetaceans, the critical role of the school & the development of collaborative foraging makes them particularly social
- Grouping offers defense against increased predator pressure, but requires developing social skills
 - i.e. Group living raises issues of food & mate competition, signals of rank, opportunities for co-op, etc.
- What are some of the <u>cognitive demands</u> of such a dependence on social interaction?

The Social Function of Intellect

Humphrey 1976

- The social domain is the most cognitively demanding
 - Physical domain highly predictable

The Social Function of Intellect

Humphrey 1976

- The social domain is the most cognitively demanding
 - Physical domain highly predictable
 - Natural world somewhat more difficult to predict

The Social Function of Intellect

Humphrey 1976

- The social domain is the most cognitively demanding
 - Physical domain highly predictable
 - Natural world somewhat more difficult to predict
 - Social domain MOST difficult to predict!

Problem changes as a consequence of trying to solve it

Social Complexity

Social Complexity

In a "simple" hierarchical society, C only needs to track its own <u>DYADIC</u> relationships.

<u>Power not = Rank</u>

(de Waal, 1986)

COALITIONS

between lower ranking individuals can out-compete higher ranking individuals

So, C must track not just its own dyadic relations, but also the <u>relations between others</u>.

Baboons - Male Mating Strategies

Baboons - Male Mating Strategies

Sex & Violence -And Friendship!

Immigrant Male Strategy

Testosterone!

Young males joining a new troop have highest testosterone levels of their lives.

Immigrant Male Strategy

So, in <u>dyadic</u> interactions, young immigrant males are <u>dominant</u> over older resident males

<u>Resident</u> Male Strategies

After they have been residents for a while, males make friends, esp with females.

Benefits of Friendship

Calmer, so more accepting of sex

Benefits of Friendship

Proximity >> familiarity >> trust of infants

Resident Male Strategies

Also make friends with infants

Resident Male Strategies

Use infant as "Buffer" against male aggression

Adult males inhibit their aggression around infants

Long-Term Resident Male Strategies

BABOONS

In time, make friends with <u>other resident males</u>.

Via grooming...

Long-Term Resident Male Strategies

In time, make friends with <u>other resident males</u>.

Via grooming...

...and through repeated reciprocal exchanges of support

Long-Term Resident Male Strategies

Synchronous displays convey Coalition as UNIT.

Long-Term Resident Male Strategies

"Hold Bottom" display, Includes handling testicles.

At first, asymmetric, but later both play both roles.

If remain calm, shows this is a coalition of consequence!

Long-Term Resident Male Strategies

Finally, resident male coalition can <u>beat "dominant" younger male</u>.

Bottlenose Males tend to form long-term alliances

In Shark Bay, Australia, usually TRIOS of males that herd/sequester females, competing with other alliances for reproduction rights

In Shark Bay, can get "<u>Super Alliances</u>" Alliances that join with others to compete against others

In Shark Bay, can get "<u>Super Alliances</u>" Alliances that join with others to compete against others

In Shark Bay, can get "<u>Super Alliances</u>" Alliances that join with others to compete against others

Chimpanzee Politics

Frans de Waal 1982

Chimpanzee Politics

Dominance Rank (Dyadic) of chimps at Arnhem Zoo

Top 3 ranked males contest the top position...

- #1 & #3 are long-time coalition partners
 - Although #3 still subordinate to #1
- # 2 is an up-and-coming young male
 - Subordinate to #1, dominant to #3
- ... Other males
- ... Females

Chimpanzee Politics

In the beginning, #2 consistently demonstrates respect to #1

Chimpanzee Politics

#2 begins his campaign for dominance by harassing females. . .

Chimpanzee Politics

1 must then invest in supporting these females in their retaliations and other conflicts

Chimpanzee Politics

While a distracted #1 deals with the females, #2 can start to play up to (e.g. groom) #3

Chimpanzee Politics

#1 breaks up any friendly (i.e. potentially coalition-forming) Interactions between #2 and #3

Chimpanzee Politics

#1 must also to put in extra time grooming
(i.e. coalition-securing) with #3

Chimpanzee Politics

Then #2 switches to doing favors for the females (e.g. groom, share food, come to aid in fights, etc.)

Chimpanzee Politics

So now #1 also needs to watch for/break up friendly interactions between #2 and females.

CHIMPS

Chimpanzee Politics

#1 grows testy, aggressive toward females, especially those who have been friendly to #2.

Chimpanzee Politics

THE COUP!

Throughout, #2 has been acting subordinate in dyadic interactions with #1.

But finally #2 makes his move, aggressively standing up to #1.

Chimpanzee Politics

THE COUP! And, with support from both #3 and the Female, #2 triumphs over #1.

#2 becomes #1!

CHIMPS

Chimpanzee Politics

As far as gaining "resources" go,

throughout this period, it was **<u>#3</u>** who had the most matings!!!

Since both other males had to be tolerant of him, to win/maintain his support, and since females became wary of those males.

• SO, <u>Social Complexity</u> is distinguished by **Triadic** (or Polyadic) interactions

Triadic Interactions

Intervention in Alliance Formation

Triadic Interactions

"<u>Re-Directed Aggression</u>"

Often directed to ally/kin of adversary

Triadic Interactions

Mediation of Reconciliation

Social Tool Use

"Social Tool" = a TRIADIC interaction, involving a <u>USER</u>, a <u>TOOL</u> and a <u>TARGET</u>

<u>USER</u> manipulates the <u>TOOL</u> in some way to influence the User's relationship with the <u>TARGET</u>

Buffer

<u>User</u> places <u>Tool</u> between User and threatening <u>Target</u>

Male baboon using infant as a "Buffer"

Buffer

<u>User places Tool</u> between User and threatening <u>Target</u>

See VIDEO

Recruit

<u>User</u> recruits <u>Tool</u> to join in aggression/threat against <u>Target</u>

See VIDEO

Passport

<u>User</u> uses its access to <u>Tool</u> to gain access to <u>Target</u>

Incite

<u>User</u> shows an investment in <u>Tool</u> to incite an investment from <u>Target</u>

Slander

User acts as if (innocent) Tool was abusive, provoking retaliation from Target

Slander

In another version of Slander, <u>User</u> uses <u>Tool</u> to gain access to <u>Target</u>'s resource

User's behavior is often connoted as "exploitative", "insincere", "Machiavellian", etc.

<u>Power not = Rank</u>

(de Waal, 1986)

COALITIONS

between lower ranking individuals can out-compete higher ranking individuals

So, C must track not just its own dyadic relations, but also the <u>relations between others</u>.

Dasser 1988 Match-to-Sample with Long Tailed Macaques

Training...

Sample: Known Mother

Alternates: Known Offspring

<u>Correct Response</u>: Select infant of mother

Dasser 1988 Match-to-Sample with Long Tailed Macaques

<u>Novel</u> Sample of Known Mother

Testing...

Alternates: Known Offspring

Dasser 1988 Match-to-Sample with Long Tailed Macaques

Subjects showed <u>First Trial Success</u> on tests, suggesting already organize known animals by their kinship relations

Note that Offspring may be grown up, so not just closest associate

Seyfarth & Cheny 1990

Observational study of Vervet Alarm Calls – Response of others to Infant Alarms

Immature vervets are unreliable signalers

Others <u>look to mom</u> for confirmation re alarms, suggesting that they know the kinship relations of their group-mates.

Perry 2004 Cebus Coalition Structure

Threatened

Needs an ally

Two friends to choose from

Friend 1 is Subordinate to adversary

Friend 2 is Dominant (or closer in rank) to adversary

Perry 2004 *Cebus* Coalition Structure

Two friends to choose from

Cebus take into account not only its *own* relation to ally, but ally's relation to adversary as well

Friend 2 is Dominant (or closer in rank) to adversary

Friend 1 is

Subordinate

to adversary

Cheney, Seyfarth & Silk 1995 Playback experiments to wild Chacma Baboons

Cheney, Seyfarth & Silk 1995 Playback experiments to wild Chacma Baboons

Make audio recordings of calls that occur during dominance interactions

Cheney, Seyfarth & Silk 1995 Playback experiments to wild Chacma Baboons

During playbacks, use real call interactions and <u>fabricated</u>, anonalous combinations

Cheney, Seyfarth & Silk 1995 Playback experiments to wild Chacma Baboons

During playbacks, use real call interactions and <u>fabricated</u>, anonalous combinations

Cheney, Seyfarth & Silk 1995 Playback experiments to wild Chacma Baboons

Await opportunity when group (not including those recorded) present

Cheney, Seyfarth & Silk 1995 Playback experiments to wild Chacma Baboons

Play back real & fabricated call pairs from hidden speaker

Cheney, Seyfarth & Silk 1995 Playback experiments to wild Chacma Baboons

NO reaction to real interactions

BIG reaction to fabricated interactions – <u>investigate!</u>

Cheney, Seyfarth & Silk 1995 Playback experiments to wild Chacma Baboons

Suggests know relations between others; as a result, recognize violations of those expectations

> Investigate, since apparent rank changes may impact YOU as well!

BIG reaction to fabricated interactions – <u>investigate!</u>

- Research in the lab can also provide insights into the cognitive mechanisms required
- Although the Ecological Validity of this work is less obvious, we can consider how might apply to social domain

Transitive Inference

Transitive Inference

First, train up pairwise choices...

Then, test with novel combination (familiar objects, new pairing)

Pigeons respond at Chance

Transitive Inference

First, train up pairwise choices...

Primates infer an ordered relationship
Transitive Inference

Social applications – deduce relative rank of others?

A dominant over B

B dominant over C

Transitive Inference

Social applications – deduce relative rank of others?

A dominant over B

B dominant over C

Infer that A dominant over C...?

Applied to Social relations...

Applied to Social relations...

PARENT

Applied to Social relations...

Applied to Social relations...

ALLY

Applied to Social relations...

COMPETITOR

Applied to Social relations...

