COGS 143: Behavioral Variation in Primates across and within species

Stephan Kaufhold

Phylogenetic Tree

All the major and many of the minor living branches of life are shown on this diagram, but only a few of those that have gone extinct are shown. Example: Dinosaurs - extinct 4

© 2008, 2017 Leonard Eisenberg. All rights reserved evogeneao.com

Phylogenetic Tree

Primate Phylogeny

Primate Phylogeny

3.18, redrawn from de Muizon C., Nature 413: 259-260, © 2001 Macmillan, www.nature.com

30 million years ago

Odontocetes

Evolution © 2007 Cold Spring Harbor Laboratory Press

Behavior Does Not Fossilize!

- And we don't have time machines.
- Luckily, there is the comparative approach!

Primate Phylogeny

Homology

= **similarity of structures** found in different species that can be explained by their **common descent** from a shared ancestor

Analogy

= structures with **similar function** and superficial resemblance but **different evolutionary origins**

a) a swift, b) a fighter plane, c) a shark, d) a dolphin, e) a torpedo.

Project 1: Social Attention in Gibbons

Social Attention in Gibbons

• Gibbons are the least studied ape

Difficult to get appropriate sample sizes because they are pair-bonded apes (no big groups, less social)

 Attention-following (or gaze-following) is a basic socio-cognitive skill and a prerequisite for more sophisticated forms of social cognition

In documented in many species in the primate order (e.g., ring-tailed lemurs, capuchin monkeys, rhesus macaques, hominids)

 Is this a product of convergent evolution to social complexity or a product of homology, i.e. a product of shared descent among primates?

Subjects

Eastern Hoolock Gibbon

Hoolock leuconedys

Silvery Gibbon

Hylobates moloch

Study Design

- We used a **competitive** paradigm (take food experimenter can't see)
- We built a species-appropriate elevated apparatus gibbons did not have to go onto the ground (they are arboreal apes)

Study Design

Test Trial: Head + Eyes Open

Results: Gibbons Used Body and Head Cues

- Suggests that sensitivity to body- and head-orientation cues is a product of shared descent among primates
- They used body and eye cues in our study but did not differentiate between open and closed eyes
 - Might be a by-product of our specific study design

Rossano, 2019 ∞ Tan, Kaufhold, Sánchez-Amaro,

Project 2: Resource Monopolization, Inhibitory Control, and Planning in Chimpanzees

de Waal, 2000

de Waal, 2000

Observations of Adversary Avoidance

- Sneak copulations (e.g., Soltis et al., 2001)
- Concealment (e.g., Byrne & Whiten, 1988, 1992)
- Distraction (e.g. Byrne & Whiten, 1988, 1992)

Prospection or Associative Learning?

- Are these behaviors the result of higher or lower level cognitive processes?
- Some researchers suggest apes are able to form subgoals and future plans (e.g., Mulcahy & Call, 2006; Osvath & Osvath, 20019, Völter & Call, 2014)
- Others maintain this ability is unique to humans (e.g., Suddendorf et al., 2018; Suddendorf & Corballis, 2010)

Chimpanzees Anticipate Conflict and Know What Others Can See

Subordinate Subject

Hare et al., 2000

Do Chimpanzees Hide Food?

- Revealed food to cooperator
- Kept food hidden from competitor
- However, they did not actively hide food
- Problem of inhibitory control?

Manipulating What Other Can Do

- Knowing what others can see is only useful as far it allows to predict what others can do
- Do chimpanzees manipulate what others can do?

Subjects

- Sanctuary-living chimpanzees (n=10)
- 6 ď; 4 Q
- Mean age: 10.3 years (range: 6-15)

Subject can release food

Subject can manipulate orientation of seesaw

Across Session Manipulations Dominant Conspecific Side

COMPETITOR

Left

Within Session Manipulation: Orientation of Seesaw

VS.

right

left

Contested vs. Uncontested

Refers to the orientation of the seesaw at the beginning of a trial.

- Contested: if subject releases the food without reorienting the seesaw the food will drop to the location that can be reached by the subject and competitor
- Uncontested: If subject releases the food without reorienting the seesaw it will drop to the location that is only accessible to the subject

Within Session Manipulation: Orientation of Seesaw

Close

Far

Within Session Manipulation: Starting Position Subject

How far does the subject need to walk to reorient the seesaw?

- Close
 - Close same room, little inhibitory control; low inhibitory control needed
 - Far move to other room while inhibiting to pull the release; high inhibitory control needed

Far

Four possible Trials within each Session

- Uncontested Close
- Uncontested Far
- Contested Close
- Contested Far

Uncontested - Close

Uncontested - Far

Contested - Close

Contested - Far

Hypotheses

- 1. Subjects will use the apparatus competitively to monopolize rewards by strategically changing the pathway.
 - Seesaw significantly more often reoriented in contested trials than in uncontested trials
- 2. An increase of inhibitory task demands (starting position of the subject) will decrease their likelihood to change the pathway.
 - Subjects will reorient the seesaw significantly more often in close trials than in far trials

Results

- Chimpanzees used the apparatus competitively and monopolized food by changing the pathway to the uncontested location
- They reoriented the pathway more often during trials that required less inhibitory control (close starting position)
- There was no learning effect within or across testing sessions, suggesting that subjects used some form of prospection or future planning
 - This highlights the possible role of subordinate strategies in the evolution of complex social cognition

Project 3: Intergroup Variation in Prosociality in Chimpanzees

Prosocial Behavior

= behavior performed to improve another's welfare (Cronin, 2012)

Are chimpanzees prosocial?

- some studies suggest that chimpanzees behave prosocial (e.g. Claidiére et al. 2015; Horner, Carter, Suchak, & de Waal, 2011; House, Silk Lambeth, & Schapiro, 2014)
- while others could not find a tendency for prosocial behavior (z.B. Amici, Visalberghi,& Call, 2014; Jensen, Hare, Call, & Tomasello, 2006; Silk et al., 2005; Tennie, Jensen, & Call, 2016)

Explanations for mixed results?

- Study design?
- Group differences?
 - Genetic differences?
 - > Ecological differences?
 - Socio-cultural differences?

Social Tolerance

Probability that individuals will be in proximity to conspecifics around valuable resources with little or no aggression (Cronin & Sanchez, 2012)

Social Tolerance

 Chimpanzee groups differed in their levels of social tolerance despite similar ecologies (while also controlling for genetic variance)

Cronin, van Leeuwen, Vreeman, & Haun, 2014

Social Tolerance

 Chimpanzee groups differed in their levels of social tolerance despite similar ecologies (while also controlling for genetic variance)

Cronin, van Leeuwen, Vreeman, & Haun, 2014

Subjects

Group 1 (n=25; 9♂, 16♀)

Group 4 (n=11; 9♂, 2♀)

Apparatus

Apparatus

- 1. Training Sessions
- 2. Test Sessions (n=18)
- 3. Control Sessions (n=6)
 - Fountain outside of enclosure controlling that they don't push for the sake of pushing a button

Results

Results

- The group with higher social tolerance (G4) pushed significantly more than the group with lower social tolerance (G1)
- The socially tolerant group (G4) provided juice for a high proportion of group members, whereas the less socially tolerant group (G1) showed more selective prosociality towards kin
- This highlights the **importance of considering intergroup variation for understanding social behavior**, especially with regards to propensity to perform behaviors rather than capacity (Kaufhold & van Leeuwen, 2019)

Social Tool Use

Thanks for Your Attention! Questions?

