

Lecture 4.2 Vision

Cogs17 * UCSD

Visual Crossover

Only after reaches Cortex, is visual field info combined via Corpus Callosum

Magnification

in Visual Cortex (V1)

Topological

(preserves spatial relationships) Map of input in V1

But ABSOLUTE size is not maintained

Fovea is greatly (80X) Magnified

Visual Imagery

Activates some of the same areas as actual visual perception

See an elephant far away

See an elephant close up

begin in Retina

LGN

Lateral Geniculate Nucleus of the Thalamus

6 layers

Magnocellular Pathways - Layers 1 & 2

Parvocellular Pathways - Layers 3-6

Also organized by which EYE (L or R) is dominant In layer

Color & Detail

Parvocellular Pathway

Includes "Simple Cells" (Bar Detectors) In V1

Parvocellular Pathway - DETAIL

"Simple Cells"

Hypercolumn =

Adjacent Hypercolumn pairs have adjacent **Receptive Fields in** 6 Layered Retina Cortex = **Topological** Map of the Retina In V1 Retina V1

"Simple Cells"

Simple Cells in V1

Respond to "bar" in a particular orientation in a given Receptive Field

"Complex" Cells in V2

Respond to **moving** "bar" in particular orientation in given Receptive Field

Spatial Frequency

Changes in Contrast / Degree of Retinal Arc

Spatial Frequency

(a) Sine-wave grating

Actually, the ideal stimulus is usually a Sine Wave Gradient

which <u>gradually</u> shifts from dark to light to dark, at different spatial frequencies

Spatial Frequency Channels

What is this???

<u>High</u> Spatial Frequency gradients

Spatial Frequency Channels

Simple cells simultaneously

respond to different Spatial Frequencies at different orientations from a given image on Retina

<u>Medium</u> Spatial Frequency gradients

Spatial Frequency Channels

Simple cells simultaneously

respond to different Spatial Frequencies at different orientations from a given image on Retina

<u>Low</u> Spatial Frequency gradients

Spatial Frequency Channels

Simple cells simultaneously

respond to different Spatial Frequencies at different orientations from a given image on Retina

Spatial Frequency Channels

Spatial Frequency channels in V1 pull out sets of SFs, low to high, from affected Receptive Fields

Primary visual (striate) cortex

While circuits in Inferior Temporal respond to (enable recognition of) face as a whole.

Inferotemporal cortex

So, as it moves up pathway, info is "reassembled", but in an abstract (relational) way, so almost any version of face can be recognized

Fusiform Gyrus

Face recognition in Inferior Temporal (IT) Cortex

Posterior Coronal Section

Damage to the Fusiform Gyrus can result in **Prosopagnosia**

- Inability to recognize faces

Fusiform Gyrus

Face recognition in Inferior Temporal (IT) Cortex

Damage to the Fusiform Gyrus can result in

Prosopagnosia

- Inability to recognize faces

Other "Complex" Cells in Inferior Temporal

For visual recognition of other learned distinctions

What Shape Is Its Bill?

Is it small and fine like a warbler's (1); stout and short like a seed-cracking sparrow's (2); dagger-shaped like a tern's (3); or hook-tipped like that of a bird of prey (4)?

Electromagnetic Radiation Spectrum

Trichromatic Color Vision

Three Cone Types

- -- each with its own type of Opsin
- -- each responsive to a different range of wavelengths

After-Images

Adapt to **Red**, will see **Green** afterimage

Adapt to **Green**, See **Red**

Adapt to **Yellow**, will see **Blue** afterimage

Adapt to **Blue**, See **Yellow**

When people are color blind, they will be blind to **Red & Green** <u>or</u> to Yellow & Blue

Color "Blobs" in V1

Within each pair of **Hypercolumns**

are embedded columns that process color called **"Blobs"**

Color "Blobs" in V1

Double Opponent Cell

Most have R+G- Center / G+R- Surround Receptive Fields

Double Opponent Cells in Striate Cortex (V1)

Double Opponent Cell

Double Color Opponent Cell

Color Opponency

Blue / Yellow opponency works much the same way as Red /Green

Color Constancy

Color Constancy

V4

detects & filters out overall tint of scene

Enables recognition of color under varying lighting conditions

= Color Constancy

Magnocellular Pathway

MT (Medial Temporal)

Along "Where/How" Visual pathway to Parietal

Includes Direction-Sensitive Motion Detectors

Detects motion RIGHT to LEFT

Detects motion LEFT to RIGHT

Detects motion DOWNWARD

motion UPWARD

FIGURE 8.49 The flow of the environment as seen from a car speeding across a bridge toward point A. The flow, shown by the arrows, is more rapid closer to the car (as indicated by the increased blur) but occurs everywhere except A, the focus of expansion, toward which the car is moving. (Also see Figure 8.48a)

Optic Flow Detectors in **MST**

Binocular Disparity

Part of WHERE In the "Where/How" Pathway

Used for Depth Perception

Binocular Disparity

Activity reverberates w/Premotor Cortex, to shape how hand approaches

Higher Parietal Cortex

Dorsal Visual Pathway "Where/How" - integrated w/ Tactile & Proprioception

In AIP (Anterior Inter-Parietal) Canonical Cells

Respond to "affordances" of objects

Higher Parietal Cortex

Mirror Cell System

Respond to seeing self, or other, perform and action.

Activity reverberates with Mirror Cells in Premotor Cortex

Promotes Imitation

Visual Pathways

STS (Superior Temporal Sulcus) Biological Motion

http://www.biomotionlab.ca/Demos/BMLwalker.html

Modularity & the Binding Problem

- **Module** = Brain area specialized for particular function
 - e.g. MT, MST, STS, V1, V4, Fusiform Gyrus, etc . . .

• If each feature (color, shape, location , motion, etc) is coded along an INDEPENDENT pathway, how is it we perceive coherent whole?

= The "Binding Problem"

• Answer??

- Perhaps a TEMPORAL solution?
- i.e. Synchronized cell assemblies, across different brain regions, when inputs originate from same stimulus