Lecture 7 Motor Processes

Three Types of Muscles

Striate (Skeletal) Muscle Connected to Tendons to Bones Voluntary movements

Cardiac (Heart) Muscle Has endogenous rhythm of activity, modified by neurons

Smooth (Organ) Muscle

Can sustain contraction, Mostly autonomically controlled

Skeletal Muscles

Come in "Antagonistic Pairs"

For each "FLEXOR" muscle, that moves bones toward body

There is a corresponding "**EXTENSOR**" muscle, that moves same bones <u>away from body</u>

Neuro-Muscular Junction

Motor Neurons (α or Alpha Neurons) release **Acytelcholine** onto muscle fibers

Fiber responds like a Neuron would!

Na+ gates open, Na+ enters cell Change in polarity opens Ca++ gates Ca++ enters cell...

BUT instead of causing release of neurotransmitter, Ca++ activates **Sarcomeres** to <u>contract</u> the muscle

Sarcomere Contractile Unit in Skeletal Muscles

Sarcomere Contractile Unit in Skeletal Muscles

Spinal Reflexes Simple Circuits

Stretch Reflex

Pain Withdrawal Reflex

Scratch Reflex

A Cerebellar Reflex

Like the human "Raspberry" (Tongue/Lip vibration)

Oscillator Circuit

Such circuits can be reflexive OR controlled (e.g. clapping)

Infant Reflexes

A Cerebellar Reflex

Babkin Reflex

Press palms, fingers grasp & mouth opens

A vestigial attempt to cling to fur

Infant Reflexes

A Cerebellar Reflex

Rooting Reflex

Touch cheek, head turns & infant suckles

Can reappear in VERY drunk adults, if cerebellum suppressed by alcohol

Cortico-Spinal (Pyramidal) **Tracts** For control of <u>voluntary</u> motion, on <u>contralateral</u> side of body

Ventro-Medial Tracts

Bilateral and **Ipsi-Lateral**

Primarily for control of posture, neck, shoulders & trunk, where one side cannot move separately from the other

Includes circuits for WALKING, since two sides must be in tight coordination

Make multiple connections in Tectum, Vestibular Nucleus, Reticular Formation, integrating with sensory & arousal systems

Cerebellum

Cerebellum

MNEMONIC:

Sarah the ballerina has a hell of a cerebellum!

Cerebellum

For rapid, well-coordinated movements requiring precise <u>timing</u>

Include preprogramed (like Saccades) and learned-through-practice behaviors...

...including shifts of Attention

Depend on <u>real-time</u> <u>Sensori-Motor feedback</u>

Purkinje Cell

Cerebellar Circuits

Cerebellar Circuits

Sobriety Test for Cerebellum Function

Smooth ballistic motion of hand to face

Walking a straight line, requires balance (integration of vestibular input)

Cerebellum is particularly sensitive to Alcohol poisoning, impairing execution of these actions

Basal Ganglia

Organizes activity into TASKS

A "Re-entrant System" that keeps track of status of "sub-goals"

"<u>Automates</u>" complex sequential process (e.g. driving)

"<u>Selects</u>" what's appropriate when

Pathologies include (OCD) Obscessive Compulsive Disorder, Attention Deficit Disorders (ADD) & Parkinson's disease

Brain Regions Affected by Parkinson's Disease

Produces tremors, difficulty with smooth execution, cognitive deficits, eventually paralysis & death

Parkinsons' Disease

Treated with "L-Dopa", a dopamine precursor that crosses blood-brain barrier

But many side effects, since Dopamine so widespread & multi-functioned in brain

Can be caused by head trauma

But also traced to environmental toxins!

Motor Cortex

Topological Cortical Maps

Motor Humunculus

Note that HANDS are particularly magnified even compared to Somatosensory map

Pre-Motor Cortex

Prepare to act; Planning

Major language areas of cerebral cortex

Mirror Cell System

Same cells respond when subject sees another perform that act

Integrated with activity of Mirror Cells in Parietal Lobe

Simulation of observed action