CS 184 * Modeling the Evolution of Cognition Lecture Wk 4: Comparative Neuroanatomy

Issues in Evolutionary Comparisons

- Anatomical comparisons & interpretation are difficult and controversial!

- Fossil Record

- Archeological evidence generally based on **Endocasts** (inner surface of skull)
- eg. Area 10: Frontal Pole (Anterior Frontal Lobe) Significantly larger in Humans than any Ape or Monkey
 - Diff not in cytoarchitectonics, but in more space available between cells for, especially, cortico-cortico connections
 - Australopithecu africanus (2.6 MYA, overlaps w/H. habilis) also shows larger Frontal Pole than Apes
 - Function still unclear- Poss involved in planning future actions, undertaking initiatives, solving analogies...
- Can determine size & some surface structure but NOT connectivity (very critical to function!)
 - Connectivity patterns are some of the largest differences between human & nonhuman primates!

Comparing to Contemporary Nonhuman Primate (NHP) Brains

- Brains of many contemporary NHPs have probably also evolved in last 5 million years
- But the many commonalities across monkey, ape & human brains allow us to ID homologues
- Plus, diffs between monkey vs. ape-and-human, and human vs. ape-and-monkey, can be informative

-<u>Scaling</u> = how size/shape changes as structure enlarges;

- <u>Isometric Scaling</u> = All parts get equally larger
- Some argue expansion of human cortex is only what is expected, given overall enlargement of brain - <u>Allometric Scaling</u> = Some areas get larger, or smaller, than others
- Many hominid theories propose particular functional areas are differentially larger, more connected - Human brain evolution involved a combination of these two = "**Mosaic Evolution**"

Human

These three images are (roughly) to scale.

Chimpanzee

Rhesus Monkey

Absolute Size Matters! – Humans largest – 3.5 X Chimpanzee, 10 X Rhesus monkey

- Not just relative size, but absolute size matters in brains: More cells, more connections; more processing
 - Note more convolutions visible in cortex, indicate expansion of cortical sheet, requiring more folding
 - Plus, new emergent properties? When does sufficient quantity make a qualitative difference??
- During fetal devel, "Regulator Genes" control timing of switch from Symmetric to Asymmetric Division of Stem Cells
 - Sym = Stem cells produce identical daughter stem cells Asym = Produce one Stem Cell & one Neuron (or Glia)
 - <u>Delay</u> of this switch by about 10 days (in humans vs. chimps) >> millions more Neurons
- White Matter (myelinated connections between cells) Most pronounced differences between human & nonhuman
 - 66% of human brain volume; But particularly tricky to compare, since scales up faster than grey matter

NOT just cortex changed - also significant changes in related Subcortical Structures

- Basal Ganglia which functions in skill learning, automatization of routines, initiating/satisfying task constraints
 - Allometrically expanded, esp in areas that connect with <u>Thalamus & Frontal Cortex</u>
- Ventral Dentate Nucleus of <u>Cerebellum</u> > Thalamus > Prefrontal and Posterior Parietal Cortex
 - Dentate is newest, deep nuclei in Cerebellum; Allometrically scaled in humans
 - Largely responsible for <u>planning & execution of fine movement</u>
 - <u>Ventral Dentate Nucleus</u> is even more significantly enlarged than other parts of Dentate
 - Receives from especially Premotor, sends to Ventrolateral & Mediodorsal Thalamus
 - This area is <u>NON-motor</u>, plays a role in "cognitive" and "visio-spatial" actitvity
 - Including attention, planning, executive function, rule-based learning
- STS (Superior Temporal Sulcus) responds to Biological motion, including of head, limb & body movements
 - Involved in MULTIPLE functional systems (see below)

Human (Hominid?) Brain Specializations

Three major **functional systems** appear especially impacted during human brain evolution

<u>Limbic + Prefrontal System</u> Affect regulation & social interpretation

- All these interactions probably help mediate assessment of emotions in others, empathy, theory of mind

- Area 13 in Orbito-Frontal Cortex, increased diversification in area in Humans and Bonobos (compared to other apes)
 - Many inhibitory connections with Limbic System, for mediating emotional responses?
 - Esp well developed connections with Amygdala; Damage associated with Autism/Theory of Mind deficits
- Lateral Amygdala (Emotional Learning) is the nucleus of the amygdala that is most disproportionately large
 Connections w/Prefrontal (Orbito- and Dorso-Medial Frontal) are involved in regulating, & recognizing, affect

<u>Mediodorsal (MD</u>) Nucleus of Thalamus – allometrically scaled = much larger & more neurons than expected
Heavily connected with <u>Prefrontal</u> cortices, helps activate complex emotional reactions, decisions
Plays a major role in declarative/episodic memory, emotional narrative

<u>Anterior Principal (AP)</u> Nucleus of Thalamus – allometrically scaled = many more neurons than expected
Connects Hippocampus to Cingulate (Limbic System, for +/- evaluation) & Prefrontal corticies

- May enable encoding more info and sustaining attention to social stimuli
- STS Human STS has expanded reciprocal connections with above

e.g. As monkey watches another's head/face turn toward/from it, activity sweeps across one area of STS
Probably also for discriminating/interpreting eye movement (direction of gaze), facial expression, gesture

- <u>Von Economo Neurons (VEN)</u> - Long unbranched for communicating between distant areas of the brain
- Found in apes & humans (and few other large-brained mammals), but not monkeys

- Found esp in Anterior Cingulate (part of Limbic System involved in Social Assessment, +/-) and Frontal Insula (between Amygdala and Prefrontal Cortex, Spontaneous emotion, Social connectedness)

Broca's + Wernicke's Speech System

While much of Human cortex may be isometrically scaled up, one area clearly allometric is **Planum Temporale**

- Temporal lobe in/around Lateral Fissure, asymmetrically larger in LEFT hemispehre

- Slight asymmetry seen in apes over monkeys, exaggeratedly different in humans, associated w/recognizing calls

- In humans, called Wernickes Area, for Language comprehension - Lexicon

- Note <u>Broca's Area</u>, while larger than in NHPs, is isometrically scaled! (Also see more on this area, below)

- But, Basal Forebrain has NEW part, not present in any other primate, modulates arousal of Broca's Area

PLUS, More connections between this area of Temporal Lobe & Premotor Cortex than in apes

- Arcuate Fasciculus, which reciprocally connects Broca's and Wernicke's Areas, to engage in language interactions

- Also includes connections to STS - esp for reading biological motion of face (for lip reading, facial expression)

Mirror Cell System

In HUMANS, areas in this system are larger, and more heavily connected, altho clear homologues exits in NHPs

- These brain areas themselves are isometrically scaled, but connections are allometric
- -i.e. White Matter (myelinated axons connecting areas) more developed between Frontal and Parietal in Humans than NHPs

Critical components of this system include...

In Parietal Cortex...

- <u>Caudal Intra-Parietal (CIP)</u> = Active when distinguish shape/location of object
- Anterior Intra-Parietal (AIP) = Discriminate Affordance
- i.e. How does shape/location of object afford grasping/manipulating
- In Premotor Cortex (Frontal Lobe)...

- Canonical Neurons (e.g. in Premotor area: F5) = Active when monkey (or human) grasps an object

- OR when monkey (or human) sees an object that is graspable (i.e. that "affords" grasping)
- This premotor area shapes hand appropriately to fit object individual is about to grasp
- Reciprocal connections reverberate activity between Parietal & Premotor Cortex
 - e.g. In humans and NHPs, Canonical & AIP co-activate when engage with affordances of objects
 - e.g. Mirror Neuron System" = Mirror Neurons found in both Parietal & Premotor Cortex
 - Mirror Neurons = Fire when individual reaches for/grasps object OR when it sees other do same

- <u>STS</u> also involved, re: biological motion of hands (recognizing how hand is moving - yours or others)

- In addition to Prefrontal connections mentioned above, also connects with **Parietal** cortex

- Humans now show expanded white--matter connections between these areas of the Cortex

As discussed in ARBIB reading this week:

- F5 (monkey premotor, associated with hand/mouth) homologue with Broca's area (speech production)

- We will discuss role in evolutionary relation between gesture & speech