Diabetes Mellitus and Dementia

Andrea Shelton & Adena Zadourian

Abstract

Diabetes mellitus increases the risk for developing dementia...BUT there is inconsistency with the subtypes of dementia...

Diabetes Mellitus (DM)

- defined as a problem of hyperglycemia

 366 million people worldwide→ 552 million by 2030

 Type 1 DM

 autoimmune disease: beta cells don't produce insulin
 - Type 2 DM
- "lifestyle" disorder: due to diet and exercise habits
 DM is a risk factor for vascular dementia and Alzheimer's

29.1 million American have diabetes

5% have Type 1

95% have Type 2

Source: American Diabetes Association, 2012

Sugar Type II Diabetes No response

So what is dementia?

• "Syndrome that affects memory, thinking, behavior, and the ability to perform everyday activities" • Two major subtypes • Alzheimer's Disease (AD) • Vascular Dementia (VD)

Who has dementia?

Currently, 35.6 million people worldwide
 o will double by 2030

Think about the cost associated with it
 o caretakers, meds, etc
 o currently costs \$214 billion→ projected to \$1.2 trillion by 2050

35.5 million people worldwide have dementia

Source - "Dementia: a public health priority" report, World Health Organization and Alzheimer's Disease International

Most Common Dementia: Alzheimer's

• Initially only thought of as only neurodegenerative o extracellular amyloid beta plaques (AB) intracellular neurofibrillary tangles (tau) BUT now insulin might have a huge role

Dementia vs. Alzheimer's

Dementia		Alzheimer's Disease	
General Definition	A brain related disorder caused by diseases and other conditions.	A type of dementia. But the most common type.	
Cause	Many, including Alzheimer's disease, stroke, thyroid issues, vitamin deficiencies, reactions to medicines, and brain tumors.	Unknown, but the "amyloid cascade hypothesis" is the most widely discussed and researched hypothesis today.	
Duration	Permanent damage that comes in stages.	Average of 8 to 20 years.	
Typical Age of Onset	65 years and older.	65 years but can occur as early as 30.	
Symptoms	Issues with memory, focus and attention, visual perception, reasoning, judgment, and comprehension.	Difficulty remembering newly learned information. With advancement, disorientation, mood and behavior changes may occur.	

Second most common: Vascular Dementia

- Small vessel disease \rightarrow strokes \rightarrow vascular dementia (VD)
 - causes permanent cognitive damage

Ischemic stroke

A clot blocks blood flow to an area of the brain

Hemorrhagic stroke

Bleeding occurs inside or around brain tissue

Medscape®	www.medscape.com			
Clinical features	Vascular Dem	entia	Alzheimer's Disease	
History of atherosclerotic diseases	Transient ische atherosclerotic e.g., diabetes r	mic attack, strokes, risk factors nellitus, hypertension	Less common	
Onset	Sudden or grad	dual	Gradual	
Progression	Slow or stepw	ise progression	Slow, progressive decline	
Neurological examination	n Neurological d	eficits	Normal	
Gait	Often disturbe	d early	Usually normal	
Memory	Mild impairme	nt in early phase	Prominent in early phase	
Executive function	Marked impair	ment and early	Impaired later	
Type of dementia	Subcortical		Cortical	
Hachinski Ischemic Score	≥ 7		≤ 4	
Neuroimaging	Infarction or w	hite matter lesions	Normal or hippocampal atrophy	
11				

Source: Roman GC, 2003;¹¹ Muangpaisan W et al., 2005.¹⁸

Source: Geriatrics Aging © 2007 1453987 Ontorio, Ltd.

Epidemiological Evidence

- They used MEDLINE via Ovid computer search (1946-2013)
 - keywords used: diabetes mellitus, dementia, epidemiologic studies
 - yielded 795 research articles→ exclusion requirements→ 18 specific articles reviewed

From the 18 studies...

• Most studies in Western countries (US, CAN, Euro) and two in Japan diagnosis of DM based on • self reports • medical records anti-diabetes meds • oral glucose tolerance test

Out of the 18 studies...

- 15/18: DM increased risk of all dementia
 about a 1.7x increase
- 14/18: Addressed DM and AD specifically
 - o so 5/14 demonstrated a significant increased risk
 - 9/14 didn't show a significant difference because of experimental method differences

Major Correlations

- Risk of AD is 1.6x greater with DM
- Risk of Vascular Dementia is 2.2x greater with DM
- "People with DM have a 1.5-2.5x greater risk of dementia that those without it among community-dwelling elderly people"

Morphologic Changes in the Brain

Hisayama Study

• In Japan, the diabetes diagnosed by glucose tolerance test measured the 2 hour post-load plasma glucose (2PG) and the fasting plasma glucose (FPG) • 2PG levels linked to increased risk of AD and VD

2PG associated with strokes

Hisayama Study Cont.

- Presence of plaques increased with increases in 2PG levels (not FPG), fasting insulin, and insulin resistance

 increase in ApoE4 increases these risks
 - ApoE is a gene on chrom. 19 (strong genetic factor for AD)
 - produced by astrocytes, liver, and macrophages
 - 7 receptors→ variety of effects

Rotterdam Scan Study

• Based on MRI, hippocampus and amygdala of DM patients was smaller than those without DM

Honolulu Heart Program Study

- DM + ApoE4 allele \rightarrow increases number of plaques and tangles in the brain (cortex and hippocampus to be specific) Risk of cerebral amyloid angiopathy was higher in DM patients and ApoE4 than without it
 - associated with worse cognitive function

Honolulu Heart Program Study Cont.

 Perhaps the link between DM, AD, and ApoE4 is due to an increased risk of cerebral amyloid angiopathy formation

 cerebral amyloid angiopathy= Amyloid protein builds up in arteries of brain

Potential Biological Mechanisms

Cardiovascular Risk Factors

1) In Type 2 DM

a) obesity, insulin resistance, atherogenic
 dyslipidemia, hypertension, proinflammatory states
 i) clustering of these risk factors accelerates
 stroke, small vessel disease, and subsequent
 vascular dementia

(1) increasing exposure to hyperglycemia \rightarrow ruins capillaries \rightarrow decreases oxygen supply to brain \rightarrow physical damage of artery \rightarrow vascular dementia

Cardiovascular Risk Factors Cont.

- 2) Standard strategies of risk reduction among the elderly are not effective in treating dementia
 - a) anti-hypertension meds, anti-platelet therapy, and statin treatment
 - i) suggests that that maybe there's more to cardiovascular diseases than just cardiovascular agents

Glucose Toxicity

- 1) Mediated By:
 - a) increase flux of glucose through the polyol and hexosamine pathway
 - b) an increased production of oxidative stress
 - c) accumulation of advanced glycation end-products (AGEs)
 - i) proteins or lipids that become glycated after exposure to sugars
 - ii) prevalent in the diabetic vasculature
 (1) believed to play causal role in blood vessel complications in DM
 iii) believed to speed up oxidative damage to cells

Hyperglycemia Increases Flux Through Polyol Pathway

Hyperglycemia **Increases Flux** Through Hexosamine Pathway

Hypoglycemia

1) In Type 2 Diabetes Patients a) 1.5-2.0 times greater risk of the development or deterioration of cognitive impairment b) can induce permanent neurologic sequelae: i) neuronal cell death ii) increase in platelet aggregation and fibrinogen formation c) could cause neurological changes that render older patients more susceptible to dementia

Changes (Disruption) in Insulin Sensitivity

Insulin Resistance + Hyperinsulinemia 1) a) typical of early type 2 DM b) impaired cognitive function Insulin and Insulin Receptors a) important roles in cognitive performance via modification of activities of excitatory and inhibitory postsynaptic receptors and activation of specific signaling pathways \rightarrow

Insulin receptor signal transduction with respect to neuronal function: Insulin binds to and activates the insulin receptor (IR). The receptor undergoes a conformational change resulting in the phosphorylation of intracellular insulin receptor substrate (IRS) proteins on tyrosine residues.

Changes (Disruption) in Insulin Sensitivity

3) AD Patients

- a) lower insulin levels in cerebrospinal fluid (CSF)
- b) higher plasma insulin levels
- c) drastically reduced densities of insulin receptor in the brain

4) Amyloid Beta (A*β*) Protein

- a) Higher levels of plasma insulin \rightarrow limit degradation of A β protein (via direct competition for the insulin-degrading enzyme) \rightarrow amyloid accumulation
- b) lower insulin levels in CSF + impaired response to insulin and insulinlike growth factor-1 \rightarrow inhibit the transportation of A β carrier proteins (albumin and transthyretin) \rightarrow decrease the clearance of A β protein

Inflammation

1) DM Patients

- a) type 2 have higher levels of circulating inflammatory markers.
- b) Elevated circulating levels of inflammatory markers were associated with worse cognitive ability

2) AD patients

- a) increase levels of: interleukin-1, interleukin-6, tumor necrosis factor $-\alpha$
- b) Macrophage inflammatory protein-1 α in reactive astrocytes nearby A β plaques in the brain
- 3) Dementia patients
 - a) Evidence of activated inflammatory response of microglial cells

Conclusions

- 1) Diabetes mellitus is a significant risk factor for vascular dementia and Alzheimer's disease.
- 2) Good control of cardiovascular risk factors could be expected to reduce the risk of dementia
- 3) Chronic hyperglycemia may cause cognitive impairments and abnormalities in synaptic plasticity.
- 4) Hypoglycemia is a risk factor for cognitive impairments
- 5) Prolonged hyperinsulinemia induces an impaired response to insulin through a decreased expression of insulin receptors at the blood brain barrier and brain and consequently inhibits the insulin transportation into CSF and brain tissues $\rightarrow A\beta$ protein build up
- 6) Chronic inflammation may play a role in accelerated cognitive impairment.

Conclusions

