
The Metabolic Syndrome

Marc-Andre Cornier, Dana Dabelea, Teri L. Hernandez, Rachel C. Lindstrom, Amy J. Steig, Nicole R. Stob,
Rachael E. Van Pelt, Hong Wang, and Robert H. Eckel

University of Colorado Denver School of Medicine, Aurora, Colorado 80045

The “metabolic syndrome” (MetS) is a clustering of compo-
nents that reflect overnutrition, sedentary lifestyles, and re-
sultant excess adiposity. The MetS includes the clustering of
abdominal obesity, insulin resistance, dyslipidemia, and ele-
vated blood pressure and is associated with other comorbidi-
ties including the prothrombotic state, proinflammatory
state, nonalcoholic fatty liver disease, and reproductive dis-
orders. Because the MetS is a cluster of different conditions,
and not a single disease, the development of multiple concur-
rent definitions has resulted. The prevalence of the MetS is
increasing to epidemic proportions not only in the United
States and the remainder of the urbanized world but also in
developing nations. Most studies show that the MetS is asso-

ciated with an approximate doubling of cardiovascular dis-
ease risk and a 5-fold increased risk for incident type 2 dia-
betes mellitus. Although it is unclear whether there is a
unifying pathophysiological mechanism resulting in the
MetS, abdominal adiposity and insulin resistance appear to be
central to the MetS and its individual components. Lifestyle
modification and weight loss should, therefore, be at the core
of treating or preventing the MetS and its components. In
addition, there is a general consensus that other cardiac risk
factors should be aggressively managed in individuals with
the MetS. Finally, in 2008 the MetS is an evolving concept that
continues to be data driven and evidence based with revisions
forthcoming. (Endocrine Reviews 29: 777–822, 2008)
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I. Introduction

THE “METABOLIC SYNDROME” (MetS) is defined as a
clustering of components that reflects the expanding

waist lines of the world. Although steeped with controversy,
the MetS has more than made its place in the medical literature
of today with more than 24,000 citations now recorded in
PubMed. Granted, many of the publications that occurred be-
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Abbreviations: ACE, Angiotensin-converting enzyme; apo, apoli-

poprotein; BAS, bile acid sequestrants; BMI, body mass index; CAI,
cholesterol absorption inhibitor; CETP, cholesteryl ester transfer protein;
CHD, coronary heart disease; CI, confidence interval; CKD, chronic
kidney disease; CRP, C-reactive protein; CVD, cardiovascular disease;
eNOS, endothelial nitric oxide synthase; ER, endoplasmic reticulum;
FFA, free fatty acid; GDM, gestational diabetes mellitus; HDL, high-
density lipoprotein; HDL-C, HDL cholesterol; HMW, high molecular
weight; HOMA, homeostatic model assessment; HSL, hormone-sensi-
tive lipase; IFG, impaired fasting glucose; IGT, impaired glucose toler-
ance; IRS-1, insulin receptor substrate-1; LDL, low-density lipoprotein;
LDL-C, LDL cholesterol; LPL, lipoprotein lipase; MetS, metabolic syn-
drome; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic
steatohepatitis; NHP, nonhuman primate; OR, odds ratio; OSA, ob-
structive sleep apnea; PAI-1, plasminogen activator inhibitor-1; PCOS,
polycystic ovarian syndrome; PPAR, peroxisome proliferator-activated
receptor; PUFA, polyunsaturated fatty acid; QTL, quantitative trait loci;
SES, socioeconomic status; T2D, type 2 diabetes; VLDL, very low-density
lipoprotein; WC, waist circumference.
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fore May 2001, when the National Cholesterol Education Pro-
gram’s Adult Treatment Panel III (NCEP:ATPIII) definition of
the MetS was put forth, did not address the MetS as we know
it today; yet, since May 2001 more than 15,000 articles have
surfaced, averaging over 40 per week. In comparison with an-
other endocrine syndrome we know so well, the world’s liter-
ature on Cushing’s syndrome is approximately 11,500 articles.
Of course the number of publications or related citations on a
topic fails to provide the final word on scientific merit; never-
theless no one can argue with the claim that this volume of
literature over the past 7 yr documents an escalating level of
interestandpotentialscientificandclinical importanceof theMetS.

So why is there so much controversy, bickering, and confu-
sion about the MetS? We believe it centers predominantly
around two issues: 1) the definition; and 2) the ability or in-
ability of the MetS as currently defined to predict coronary heart
disease (CHD) or other forms of cardiovascular disease (CVD)
or type 2 diabetes (T2D) in a way superlative to the risk factors
we know so well. For CHD, these would include low-density
lipoprotein (LDL) cholesterol (LDL-C), tobacco, family history,
and others that are included in the definition of the syndrome,
i.e., hypertension, low levels of high-density lipoprotein (HDL)
cholesterol (HDL-C), and diabetes (if included as a component
of the MetS). For T2D risk, this would simply be the fasting
glucose concentration.

According to the NCEP:ATPIII panel, the primary purpose
for identifying the MetS was to identify individuals at higher
risk of CVD that extended beyond LDL-C and was obesity-
related (1). The purpose of identifying these patients was to
emphasize further the importance of a healthy lifestyle in
reducing risk. Yet a syndrome is not a disease and cannot be
viewed microscopically using hematoxylin and eosin. If one
considers Cushing’s syndrome as an example, facial round-
ing, plethora, supraclavicular fullness, proximal myopathy,
cutaneous wasting, central obesity, nephrolithiasis, hyper-
tension, glucose intolerance, hyperandrogenism, oligomen-
orrhea, hypogonadism, osteoporosis, and neuropsychiatric
disorders could all be part of the clinical presentation. Yet
because only a clustering of these components is typically
present, we teach our students, house staff, and fellows to
consider Cushing’s syndrome when their patients demon-
strate the presence of some but not all these components.

The purpose of this review is not to dwell on the controversy,
but to acknowledge it. We then dissect the vast literature on the
MetS highlighting the most important aspects of the epidemi-
ology, pathophysiology, experimental models, and related clin-
ical and population data. To conclude, some discussion of the
conditions associated with the MetS and therapeutics follows.
We are hopeful that this comprehensive review will not only
inform the reader, but also challenge him/her to put the MetS
into appropriate scientific and clinical perspective.

II. Definitions

A. Brief history: nomenclature of the metabolic syndrome

Although the term MetS has become widely used since its
inception in 2001 by the NCEP:ATPIII (1), the concept of
“clustering” metabolic disorders and CVD risk factors has
been discussed in the scientific literature for many decades.

In fact, recent reviews have noted that independent scientists
published reports of the association between diabetes mel-
litus and hypertension as early as the 1920s (2), when Kylin
(3) documented a connection between hypertension, hyper-
glycemia, and gout. While the primer for understanding
visceral adiposity did not occur until nearly 30 yr later (4), by
the early 1990s visceral obesity was fully appreciated as a
component of the insulin resistance syndrome (5). In 1980,
the seminal work of Margaret Albrink (6) focused on the
relationship between obesity, hypertriglyceridemia, and hy-
pertension (7). It was not until 1988 when Reaven (8), in his
landmark Banting Lecture, coined the term “Syndrome X” to
describe the proposed interrelationships between resistance
to insulin-stimulated glucose uptake, hypertension, T2D,
and CVD. During the ensuing 10 yr, Syndrome X and other
terms were used to describe the clustering of cardiovascular
and metabolic risk factors, including “deadly quartet” (9)
and the “insulin resistance syndrome” (10–12).

B. Diverging definitions: a syndrome rooted in controversy

The clinical utility of identifying people with the MetS has
raised concerns from many scientific groups. In particular,
the use of the term “syndrome” was examined and discussed
by the International Diabetes Federation (IDF) (13). The IDF
described a syndrome as “a recognizable complex of symp-
toms and physical or biochemical findings for which a direct
cause is not understood…the components coexist more fre-
quently than would be expected by chance alone. When
causal mechanisms are identified, the syndrome becomes a
disease.” Although insulin resistance is present in a majority
of people with the MetS, the IDF found insufficient evidence
for a causal link between the two, a statement that agreed
with the American Diabetes Association (ADA), which pub-
lished its concerns about the lack of certainty regarding the
causative pathogenesis of insulin resistance and its utility as
a marker for CVD (14). In particular, the ADA emphasized
the lack of clarity in the MetS definition and cautioned cli-
nicians not to assume that the MetS is well characterized (14).
Thus, the term syndrome in itself has sparked considerable
controversy.

Overall, a combination of factors, such as improved meth-
odologies and increased awareness of the comorbidity of
cardiovascular and metabolic diseases, led to the notion that
identifying such a syndrome could be predictive of CVD.
Although there are divergent criteria for the identification of
the MetS, they all tend to agree that the MetS core compo-
nents include obesity [waist circumference (WC)], insulin
resistance, dyslipidemia, and hypertension (13). The first
formal definition of the MetS was put forth in 1998 by the
World Health Organization (WHO) (15). This definition fo-
cused primarily on the presence of insulin resistance, iden-
tified by hyperinsulinemia, impaired glucose tolerance
(IGT), or the diagnosis of T2D, which had to be present to
make the diagnosis. In addition, two of the following also
had to be present: dyslipidemia (reduced HDL-C and in-
creased triglycerides), hypertension, and microalbuminuria
(Table 1). Of interest, the earliest definition of hypertension
was a blood pressure of at least 160/90 mm Hg, later revised
to at least 140/90 mm Hg. According to the WHO, the pri-
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mary purpose of identifying individuals with the MetS was
to identify patients at high risk for developing CVD as well
as nondiabetics at high risk for developing diabetes. The
European Group for the Study of Insulin Resistance (EGIR)
published a separate set of criteria shortly thereafter (12). The
basic premise of the EGIR definition was that the MetS “is a
syndrome of mild anomalies which, in combination, increase
cardiovascular risk.” This definition, although similar to the
WHO definition, did not include microalbuminuria (Table
1). The EGIR emphasized that the presence of microalbu-
minuria was not a requirement for one to have the MetS. In
2001, the NCEP:ATPIII published a new set of criteria based
on common clinical measurements: WC, blood lipids, blood
pressure, and fasting glucose (1, 16, 17). The NCEP:ATPIII
definition differed from both the WHO and EGIR definitions
in that the presence of “insulin resistance,” per se, was not a
necessary criterion to make the diagnosis (Table 1). Again,
the primary purpose of the NCEP:ATPIII definition of the
MetS was to identify individuals at high risk for CVD that
extended beyond the traditional cardiac risk factors.

Since these initial attempts to define the MetS, other
groups, including the American Association of Clinical En-
docrinologists (AACE) (18), have proposed working defini-
tions to describe the interdependence of cardiovascular and
metabolic diseases (Table 1). The AACE definition placed a
greater focus on insulin resistance and excluded individuals
with T2D. In their 2004 workshop, the IDF recognized the
difficulties in identifying criteria for the MetS that were ap-
plicable across ethnic populations (13). Specifically, they ar-
gued that multiple definitions of the MetS led to difficulties
in comparing data between studies and did not provide
unified diagnostic criteria to identify the presence of the
syndrome. The IDF definition emphasized central obesity as
a necessary condition to make the diagnosis of the MetS
(Table 1). The IDF also proposed a new set of criteria with
ethnic/racial specific cutoffs. For example, WC ranges were
specified for those from Europe, South Asia, China, Japan,
ethnic South and Central America, sub-Saharan Africa, and

the Eastern Mediterranean/Middle East. Moreover, a guide
for measuring WC was suggested, and there was discussion
to the effect that in Australia, when the body mass index
(BMI) is greater than 30 kg/m2, a WC measurement is un-
necessary. It is also notable that the most recent IDF criteria
do not emphasize insulin resistance, but instead focus on
fasting plasma glucose concentrations.

In general, until more evidence accumulates that eluci-
dates the cause of the MetS and its impact on CVD and T2D
incidence and outcomes, these controversies are unlikely to
be resolved. However, identification of multiple components
of the syndrome is undeniably an opportunity to encourage
patients to make lifestyle changes that will attenuate their
chances for CVD and metabolic disease later in life.

III. Epidemiology

The prevalence of the MetS is increasing throughout the
world (19). Prevalence estimates of the MetS in the United
States and around the world, however, are dependent on the
definition that is used to determine inclusion as well as the
composition (e.g., sex, age, race, and ethnicity) of the popu-
lation being studied. Moreover, lifestyle habits and socio-
economic status (SES) appear to influence prevalence across
sex, age, and race/ethnicity cohorts.

A. Prevalence estimates according to definition

Estimates of the prevalence of the MetS differ depending
on the definition (NCEP:ATPIII, WHO, IDF, EGIR) being
used to categorize individuals. The WHO and NCEP:ATPIII
definitions are similar with respect to criteria for obesity,
hypertension, and dyslipidemia. However, insulin resis-
tance, IGT, and/or T2D as prerequisites of the WHO defi-
nition make this definition relatively more restrictive. The
exclusion of people with T2D from the EGIR definition also
makes its definition less inclusive. On the other hand, the IDF
definition, which has central obesity as its prerequisite, may

TABLE 1. Criteria for the MetS definitions

WHO, 1998 (15) EGIR, 1999 (12) NCEP:ATPIII, 2001 (1) AACE, 2003 (18) IDF, 2006 (13)

High insulin levels,
IFG or IGT, and
two of the
following:

Top 25% of the fasting
insulin values
among nondiabetic
individuals and two
of the following:

Three or more of the
following:

IGT and two or
more of the
following:

Central obesity as defined by
ethnic/racial, specific
WC, and two of the
following:

Abdominal obesity:
WHR �0.9, BMI
�30 kg/m2, WC �
37 inches

WC: �94 cm for men,
�80 cm for women

WC: �40 inches for
men, �35 inches for
women

Triglycerides
�150 mg/dl

Triglycerides �150 mg/dl

Lipid panel with
triglycerides �
150 mg/dl, HDL-C
�35 mg/dl

Triglycerides �2.0
mmol/liter and HDL-
C �1.0 mg/dl

Triglycerides �150
mg/dl

HDL-C: �40 mg/
dl for men,
�50 mg/dl for
women

HDL-C: �40 mg/dl for
men, �50 mg/dl for
women

BP �140/90 mm Hg BP �140/90 mm Hg
or antihypertensive
medication

HDL-C: �40 mg/dl for
men, �50 mg/dl for
women

BP �130/85
mm Hg

BP �130/85 mm Hg

Fasting glucose �6.1
mmol/liter

BP �130/85 mm Hg FPG �100 mg/dl

FPG �110 mg/dla

Reference numbers are shown in parentheses. WHR, Waist-to-hip ratio; BP, blood pressure; FPG, fasting plasma glucose.
a In 2003, the ADA changed the criteria for IFG tolerance from �110 mg/dl to �100 mg/dl (16, 17).
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be relatively less restrictive than the NCEP:ATPIII definition.
Prevalence estimates based on the original NCEP:ATPIII def-
inition became more inclusive when the original criteria were
revised to include the newer 2003 ADA-recommended cutoff
for impaired fasting glucose (IFG) (i.e., �100 vs. 110 mg/dl).
Clearly, whether or not epidemiological studies using the
NCEP:ATPIII or WHO criteria include or exclude individ-
uals with T2D impacts their prevalence estimates because the
vast majority of T2D patients meet the minimum criteria for
the MetS (20). Differences in the age-adjusted prevalence
estimates using the various definitions of MetS within two
National Health and Examination Survey (NHANES) co-
horts (NHANES 1988–1994 and NHANES 1999–2002) are
illustrated in Table 2 (21–24). Prevalence estimates generally
were: 1) higher when the NCEP:ATPIII definition was re-
vised; 2) similar between WHO and NCEP:ATPIII; and 3)
higher using IDF rather than NCEP:ATPIII criteria. Preva-
lence estimates also increased over time (across the two
NHANES cohorts) from approximately 29% (1988–1994 co-
hort) to 35% (1999–2002 cohort). The cause of this apparent
increase over such a short period of time is not known but
was likely due to differences in WC and in the composition
of the cohorts.

MetS prevalence estimates were compared, using the
WHO, NCEP:ATPIII, and IDF definitions, in middle-aged
adults from the San Antonio Heart Study stratified by sex
and race/ethnicity (Table 3) (25). The San Antonio data dem-
onstrated lower prevalence estimates using the WHO criteria
and higher prevalence estimates using the IDF criteria, rel-
ative to NCEP:ATPIII. These data further demonstrated an
interaction between sex and race/ethnicity on MetS preva-
lence in middle-aged adults, such that MetS prevalence ap-
peared to be higher in white, non-Hispanic men compared
with women, whereas MetS prevalence was similar in Mexican-
American men and women.

As is the case for studies conducted in the United States,
studies from other countries have reported varying MetS
prevalence rates depending on the definition used (Table 4).
Estimates of prevalence using the IDF criteria are often
slightly higher than when the NCEP:ATPIII definition of
MetS is used within the same population (26–31). However,
both China and Iran seem to have lower prevalence rates
when the IDF definition is used (32, 33). Other studies have
found less consistent differences in MetS prevalence using
the different definitions (34–38). Thus, definition-related dif-
ferences in prevalence are not consistent among countries
and may be attributed, in part, to the race-specific WC guide-
lines included in the IDF definition. Many global studies
assessing MetS prevalence have included diabetic subjects
in their sample population, which clearly impacts the
number of people estimated to have MetS (27–29, 31, 35,

36, 39 –52). Not surprisingly, the overall prevalence of the
MetS often increases in parallel with increases in obesity
(24, 41, 53).

B. Prevalence estimates by sex

In the United States, the age-adjusted prevalence of the
MetS is somewhat different between women and men, but
the directionality of that difference has been inconsistent
across cohorts. In the NHANES 1988–1994 cohort, the prev-
alence of the MetS was lower in women than men (23.9 vs.
27.8%; n � 5775), whereas the prevalence was higher in
women than men in the later 1999–2002 cohort (30.3 vs.
28.0%; n � 1514) (54). The age-adjusted prevalence increased
dramatically in women over this timeframe but did not
change in men. The reason for the increase in women is not
clear, but it is likely that this was due, in part, to changes in
the racial and ethnic composition of the female cohort. The
relative impact of racial/ethnic composition on sex-related
differences in MetS is illustrated in Table 5.

Although in many countries there is very little difference
between rates of MetS among women and men, there are
some countries that have noticeably greater numbers of
women than men that meet the MetS criteria (30, 31, 33, 36,
39, 40, 43, 52, 55–58), whereas others report greater preva-
lence in men (26, 35, 59). Because sex-related differences in
MetS prevalence are not universal, differences between
women and men within specific countries may be due, for
example, to differing SES, work-related activities, and cul-
tural views on body fat. Importantly, the development of the
inclusion criteria for each of the definitions was based upon
epidemiological data primarily from westernized countries.
Although the definitions may still be used to estimate prev-
alence in any population, it remains unclear how each of the
individual criteria may impact sex-specific prevalence rates
within certain countries. For example, a WC of more than 88
cm in women from the United States may be a reasonable
threshold indicative of higher than normal central adiposity
and therefore increased risk of CVD and T2D, but that same
waist threshold in an Arab or Asian nation might be too high.

TABLE 2. Age-adjusted prevalence according to MetS definition within NHANES (unadjusted for sex or race/ethnicity and including those
with T2D)

n ATPIII 2001 ATPIII revised WHO IDF

NHANES 1988–1994 (21) 8814 23.7%
NHANES 1988–1994 (22) 8608 23.9% 25.1%
NHANES 1988–1994 (23, 63) 6436 24.1% 29.2%
NHANES 1999–2002 (23, 63) 1677 27.0% 32.3%
NHANES 1999–2002 (24, 54) 3601 34.6% 39.1%

TABLE 3. Prevalence according to MetS definition (stratified by sex
and race/ethnicity and including those with T2D) in the San
Antonio Heart Study (25, 412)

n WHO ATPIII IDF

Women
White, non-Hispanic 506 12.1% 16.8% 24.7%
Mexican-American 1171 27.3% 30.9% 38.5%

Men
White, non-Hispanic 422 18.8% 24.0% 28.4%
Mexican-American 842 28.3% 29.6% 40.4%
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Indeed, the addition of the ethnicity-specific WC criteria to
the IDF 2005 definition attempted to take this possibility into
account, lowering the WC threshold from at least 88 cm to at
least 80 cm for women of certain African, Arab, and Asian
populations. However, apart from slightly shifting preva-
lence rates up or down in women and men, it is unclear
whether making the WC criteria more inclusive in these
populations more effectively captures those who are at great-
est risk of CVD and T2D.

C. Prevalence estimates by race/ethnicity

Within the United States, sex-related differences in MetS
prevalence are influenced by race and ethnicity-related dif-
ferences (Table 5). For example, age-adjusted prevalence of
MetS in the NHANES studies was lower in white, non-

Hispanic women than men, whereas prevalence was higher
in African-American women than men. Mexican-American
women had a higher prevalence of MetS compared with men
in the earlier NHANES 1988–1994 cohort, but the prevalence
almost doubled in Mexican-American men in the later
NHANES 1999–2002 cohort such that age-adjusted preva-
lence was lower in Mexican-American women than men. On
the other hand, MetS prevalence was not different between
Mexican-American men and women in the San Antonio
Heart Study. Thus, sex-related differences in MetS preva-
lence appear to be largely dependent on the racial and ethnic
composition of the cohort being studied. Comparison of
MetS prevalence among cohorts from other countries further
highlights the relative impact of racial/ethnic composition
on sex-related differences in MetS (Table 4).

TABLE 5. Age-adjusted prevalence of MetS by race/ethnicity and sex (using NCEP:ATPIII criteria, including those with T2D)

White, non-Hispanic African-American Mexican-American

Male Female Male Female Male Female

NHANES 1988–1994 (22) 25.1% 22.7% 16.5% 26.1% 28.0% 36.3%
NHANES 1999–2002 (54) 35.4% 31.5% 24.5% 36.4% 50.6% 46.2%
San Antonio Heart Study (25) 24.0% 16.8% 29.6% 30.9%

TABLE 4. Prevalence of the MetS among various countries (by definition and by sex where data were provided)

Ref. n Age (yr) ATPIII 2001 WHO IDF EGIR

Australia 26 11,247 (8438
no DM)

�25 24.4% m, 19.9% w 25.4% m, 18.2% w 34.4% m, 27.2% w 15.6% m, 11.3% w

Brazil 56 1,242 40–74 25.9% m, 40.9% w
Cameroon 99 1,573 24–74b 0% m, 0% w 4.9% m, 2% w 0% m, 0% w
Canada (non-Aboriginal) 39 2,058a 18� 30.6% m, 29.2% w
Canada (Inuits) 39 238a 18� 6.7% m, 18.8% w
China 32 6,610 �52 18.5% m, 15.7% w 18.1% m, 22.4% w 16.2% m, 19.0% w 11.8% m, 12.2% w
China 40 15,540a 35–74 9.8% m, 17.8% w
Denmark 29 2,493a 41–72 18.6% m, 14.3% w 23.8% m, 17.5% w
Finland 34 2,182 24–39 13.0% m/w 14.9% m/w 9.8% m/w
Finland 35 2,049a 45–64 38.8% m, 22% w
France 41 3,770a 30–64 11.0% m, 8.0% w
Greece 59 2,282 �18 25.2% m, 14.6% w
Greenland 36 917a �35 13% m, 22% w 20% m, 22% w
Hungary 27 13,383a 30–60 6.7% m, 9.8% w 14.9% m, 8.6% w
Southern India (Urban) 28 2,350a 20�b 17.1% m, 19.4% w 27.3% m, 19.7% w 23.1% m, 28.2% w
Northern India (Urban) 57 300 20� 18.4% m, 30.9% w
Iran 33 10,368 20� 24.0% m, 40.5% w 17.0% m, 20.0% w 21.0% m, 41.0% w
Ireland 42 890a 50–69 21.8% m, 21.5% w 24.6% m, 17.8% w
Italy 56 1,198 40–74 26.8% m, 23.7% w
Northern Jordan 43 1,121a 25–85 28.7% m, 0.9% w
Mexico 44 2,158a 20–69 28.5% m, 25.2% w 13.4% m, 13.8% w
Oman 45 1,419a 20–99 19.5% m, 23.0% w
Palestine 46 992a 30–65 17.0% m/w
Peru 47 1,878a 20–80 18.1% m/w
Philippines 48 4,541a �20 14.3% m, 14.1% w
Russia 49 146a 25–89 66.9% m/w
Slovakia 50 657a �30 20.0% m/w
South Korea 51 40,698a 20–82 5.2% m, 9.0% w
Spain 30 2,540 35–64 22.0% m, 28.8% w 27.3% m, 31.7% w
Sweden 37 5,047 46–68 20.6% m/w 21.9% m/w 18.8% m/w
Sweden 24 1,007 45–69 14.8% m, 15.3% w
Sweden 38 508 70 26.3% m, 19.2% w
Tunisia 31 863a 40� 14.6% m, 30.8% w 25.7% m, 30.8% w 30.0% m, 55.8% w
Turkey 52 4,259a 20–90 28.0% m, 39.6% w
Turkey 58 2,296 28� 32.2% m, 45.0% w
Taiwan 55 5,936 20–80 18.3% m, 13.6% w 16.1% m, 13.3% w

DM, Diabetes mellitus; m, men; w, women.
a T2D included.
b Not age-adjusted.
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D. Prevalence estimates by age

1. MetS in older populations. Not surprisingly, the MetS be-
comes more prevalent with each decade of life, increasing in
parallel with age-related increases in obesity and, in partic-
ular, central adiposity (23, 60, 61). In the NHANES cohorts,
MetS prevalence continued to increase with age into the sixth
decade, with prevalence in women catching up to and then
exceeding that in men after the age of 60 yr (62, 63) (Fig. 1).
These trends suggest an interaction between age and sex on
the prevalence of the MetS. The definition used to estimate
prevalence, however, may influence this interaction. The
Cardiovascular Health Study, which studied men and
women over the age of 65 yr, observed higher MetS preva-
lence in women than men (37.4 vs. 32.1%) using the NCEP:
ATPIII criteria, but lower prevalence in women than men
(23.9 vs. 32.4%) using the WHO criteria (64). Nevertheless,
MetS prevalence increases consistently with age between the
ages of 12 to 60 yr in the United States (Fig. 1) and across the
globe, independent of sex (27, 28, 44, 65).

Studies that have compared age-related increases in prev-
alence among different definitions have observed variable
prevalence estimates after the sixth or seventh decades (26,
28). Much of this variability in these later decades of life may
be due to a survival effect, because those most susceptible to
obesity-related mortality have likely died by this point (66).
Finally, whether prevalence estimates plateau or drop off
steeply after the age of 60 yr also varies according to the MetS
definition being used (26, 28, 52).

2. MetS in younger populations. Current literature supports the
notion that the presence of the MetS in youth may be an
important predictor of future risk for diabetes and CVD (67).
Landmark studies from the Bogalusa Heart Study demon-
strated that cardiovascular risk factors present in childhood
are predictive of coronary artery disease in adulthood (68,
69). For example, LDL-C and BMI measured in childhood
were found to predict carotid intima-media thickness in

young adults (70). There is substantial evidence that obesity
is the main determinant of insulin resistance in children (71)
and that it increases the risk not only for the MetS in adult-
hood (72) but also for CVD and T2D later in life (73–76).

A major problem with identifying the MetS in children and
adolescents is that there are no established criteria in this
population. In fact, a recent review found 27 publications that
used 40 different definitions of the MetS in children and
adolescents (77). The uniqueness of pediatric growth pat-
terns, effects of hormonal changes of puberty on insulin
sensitivity and lipid profile, and the impact of ethnic back-
ground on components of the syndrome make such criteria
difficult to establish. The reported prevalence of MetS in
youth, therefore, varies according to the age and population
under study and the definition being used (Table 6) (71,
78–82). Cook et al. (79) estimated the prevalence of the MetS
in 2430 U.S. adolescents using NHANES 1986–1994 data by
modifying the NCEP:ATPIII definition, based on reference
values for physiological parameters in youth. The overall
prevalence was 4.2%, 6.1% in boys and 2.1% in girls, respec-
tively. Among obese and overweight adolescents, prevalence
of the MetS was 28.7 and 6.8%, respectively. Similar to adults,
prevalence of individual components of the MetS differed by
race/ethnicity (e.g., prevalence of elevated blood pressure
was higher and prevalence of high triglyceride and of low
HDL-C concentrations was lower in African-American youth
compared with non-Hispanic white or Mexican-American
youth). Using the same population and a similar definition
but different cut points for hypertriglyceridemia and central
obesity, de Ferranti et al. (80) obtained an overall prevalence
estimate of 9.2%. In a population of 218 overweight Hispanic
youth with a family history of T2D, the prevalence of the
MetS ranged from 26 to 39%, depending on the definition
used (83). Weiss et al. (82) assessed the impact of varying
degrees of obesity on the prevalence of the MetS in 493
children and adolescents with BMI in the 97th percentile or
above for age and gender. The prevalence of the MetS in-
creased with the severity of obesity and reached approxi-
mately 50% in severely obese youngsters. Finally, Cook et al.
(78) recently examined the prevalence of the MetS in 1,826
U.S. adolescents from the NHANES 1999–2002 survey using
four definitions of the MetS previously used in this age
group. They found that depending on the definition used, the
prevalence varied between 2.0 and 9.4% in all teens and
ranged between 12.4 and 44.2% in obese teens (78).

These discrepancies clearly emphasize the need for a con-
sensus definition of the MetS in younger individuals first to
understand better the prevalence but also as a potential clin-
ical tool in identifying at-risk individuals (67, 84). The IDF
Task Force on the Epidemiology and Prevention of Diabetes
has recently developed a definition primarily for those 10 yr
and older but less than 16 yr of age (67). MetS can be diag-
nosed in this age group by abdominal obesity (�90th per-
centile) and the presence of two or more other factors, in-
cluding hypertriglyceridemia (�1.7 mmol/liter), low HDL-C
(�1.03 mmol/liter), elevated blood pressure (�130 mm Hg
systolic or �85 mm Hg diastolic), or increased blood glucose
(�5.6 mmol/liter). For those less than 6 yr of age, there were
insufficient data to make a recommendation. For children
between the ages of 6 and 10 yr, they suggested that the MetS
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FIG. 1. Prevalence of the MetS across age groups and gender in var-
ious countries. The MetS prevalence continues to increase with age
into the sixth decade, with prevalence in women catching up to and
then exceeding that in men after the age of 60 yr in the United States
and across the globe (27, 28, 44, 55, 65).
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not be diagnosed but that a strong message regarding weight
reduction should be made in those with abdominal obesity.
Finally, they recommended that the adult criteria be used for
those 16 yr or older.

Important to note in the study of the MetS in youth is that
there are racial/ethnic differences in the prevalence of the
MetS, as well as differences in the prevalence of individual
components of the syndrome. For example, insulin resistance
is greater among African-American compared with non-
Hispanic white youth (85–88). Goran et al. (85) reported that
Mexican-American and African-American children were
both more insulin resistant than non-Hispanic white chil-
dren, to a comparable degree and independent of obesity,
although underlying physiological compensatory mecha-
nisms differed between African-American and Mexican-
American youth. However, although African-American
youth are more insulin-resistant, the prevalence of the MetS
is lower in African-American youth (2%) than Hispanic
(5.6%) and non-Hispanic white youth (4.8%) (79), suggesting
that African-American youth may be less likely to develop
obesity-related clustering of MetS components than non-
Hispanic white youth.

Duncan et al. (62) examined trends in the prevalence of
MetS in U.S. adolescents aged 12–19 yr using NHANES data
(1998–1994 and 1999–2000) and the pediatric definition de-
veloped by Cook (79). The overall prevalence of a MetS
phenotype among U.S. adolescents increased from 4.2% in
NHANES III (1988–1992) to 6.4% in NHANES 1999–2000
(P � 0.001). The trend was evident in both sexes and in all
three major race/ethnic groups analyzed in this study (Fig.
2). Based on population-weighted estimates, the study esti-
mated that more than 2 million U.S. adolescents currently
have a MetS phenotype. The MetS was most frequent in
obese adolescents, with a prevalence of 32.1%, compared
with only 7.1% for overweight adolescents. Given the in-
creasing prevalence of overweight and obesity in youth (89)
and the strong relationship between obesity and the MetS, it
is not surprising that the prevalence of MetS has increased
over the past decade among U.S. adolescents.

Interestingly, the risk of developing T2D in youth with the
MetS is currently unknown. This is partially attributed to the

difficulty of diagnosing T2D in children and to the lack of a
standard definition of the MetS definition in youth (67).
Despite this, it is estimated that approximately 92% of the
adolescent population that has T2D also has the MetS (90, 91).
It has also recently been shown that the incidence of T2D
in adulthood is increased 3-fold in those with the MetS as
children (92). Further research is necessary to understand
better the link between the MetS in youth and the devel-
opment of T2D.

E. Prevalence estimates by socioeconomic status, tobacco,
alcohol, and level of education

Few studies have evaluated the impact of SES outcomes on
the prevalence of MetS. In the NHANES 1988–1994 cohort,
multivariable adjusted odds ratios (OR) and 95% confidence
intervals (CI) for the MetS were reported for select SES and
lifestyle outcomes (23). Risk was increased in women (OR,
1.8; 95% CI, 1.2–2.6) and men (OR, 1.5; 95% CI, 1.1–2.2) who
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FIG. 2. The prevalence of the MetS among adolescents. Prevalence of
the MetS among U.S. adolescents (age 12–19 yr) increased from 4.2%
in NHANES III (1988–1992) to 6.4% in NHANES 1999–2000 (P �
0.001) in both sexes and in all three major race/ethnic groups
analyzed (62).

TABLE 6. Prevalence of MetS in children and adolescents among various cohorts

Population Ref. n Criteria Prevalence

NHANES (1988–1994),
youths (12–19 yr old)

79 2430 ATP III (�3): WC �90th %; IFG;
TG �150 mg/dl; HDL �40 mg/
dl; BP �90th % or medication

4.2%; BMI �95th %, 28.7%

NHANES (1988–1994),
youths (12–19 yr old)

80 1960 ATP III (�3): WC �75th %; TG
�70th %

9.2%

Overweight Hispanic youth
(BMI �85th %; 8–13 yr
old) with family history of
T2D

81 126 ATP III (�3): HDL �10th %; IGT 38%

Multiethnic/multiracial
youths (4–20 yr old)

82 490 ATP III and WHO (�3): BMI
z-score �2; IGT; TG �95th %;
HDL �5th %; BP �95th %

38.7% in moderately obese; 49.7%
in severely obese

NHANES (1999–2002),
youths (12–19 yr old)

78 1826 Cook et al. (79) 9.4%

Cruz et al. (81) 2.0%
Weiss et al. (82) 2.4%
Adult NCEP (1) 5.8%

BP, Blood pressure; TG, triglycerides.
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were current smokers compared with those who never
smoked (23). In men only, the OR for MetS was increased
(OR, 1.7; 95% CI, 1.2–2.5) in those who had heavy (�60% total
calories) compared with moderate (40–60% total calories)
carbohydrate intake, and the OR for MetS was increased for
physical inactivity (OR, 1.4; 95% CI, 1.0–2.0) (23). In women
only, the OR for MetS was decreased (OR, 0.8; 95% CI, 0.6–
1.0) in those who reported regular (1 drink per day) com-
pared with moderate (�1 drink per day) alcohol intake, and
the OR was increased (OR, 1.5; 95% CI, 1.0–2.3) in those who
reported a lower (�$15,000/yr) compared with a higher
(�$25,000/yr) household income (23). Level of education
was not related to OR for MetS in women or men in this
NHANES cohort (23). However, the association between SES
and MetS within the United States appears to be confounded
by race and ethnicity. Among African-American women and
men (Pitt County Study, n � 1195), higher educational status
(at least high school graduation) was associated with re-
duced risk of MetS (OR, 0.63; 95% CI, 0.48–0.83), compared
with lower educational status (less than high school gradu-
ation) (93).

Although there is a paucity of global epidemiological stud-
ies assessing the impact of SES on MetS prevalence, there are
some data to suggest a similar relation between MetS and SES
in other westernized nations as is seen within the United
States (55, 56, 60, 61). An inverse association between level of
education and risk of MetS has been observed in middle-
aged Swedish women (94), as well as Finnish women and
men (95). Among British civil servants (Whitehall II cohort,
n � 7,013), women and men had a 2- to 3-fold increased risk
of MetS if they were in the lowest (compared with the high-
est) employment grade quintile: women, OR, 2.8; 95% CI,
1.6–2.9; men, OR, 2.2; 95% CI, 1.6–2.9 (96). In these three
European studies, adjusting for other behavioral risk factors
(e.g., smoking and alcohol intake) did not alter the association
between the SES outcomes and MetS (94–96). In Korea, the
association between SES and MetS was evident only in
women. Relative to women with lower education and in-
come, Korean women with higher education and income
levels had a lower risk for MetS (97). In Korean men, there
was no significant relation between the prevalence of MetS
with education or income levels (97). Furthermore, a separate
Korean study demonstrated interactions between SES (i.e.,
education, income) and behavioral (i.e., smoking, alcohol
intake, exercise) outcomes, suggesting that health behav-
iors differentially impact incidence of MetS across SES
levels (98).

In addition to SES, urban vs. rural location may play a role
in prevalence of MetS in developing nations. Abdul-Rahim
et al. (46) found that Palestinians with T2D living in an urban
area had a 17% greater likelihood of meeting NCEP:ATPIII
MetS criteria than those living in a rural area. Furthermore,
men in urban areas of Cameroon had a 7.3-fold greater risk
of developing MetS, whereas women had a 5.9-fold increased
risk (99). Similar trends have been observed in China and
Russia (49, 100, 101). However, not all nations with devel-
oping economies exhibit differences in MetS prevalence be-
tween urban and rural areas (52, 102).

F. Changes in prevalence following intervention

Prevalence estimates of MetS may be modifiable by inter-
vention. The Diabetes Prevention Program (DPP) conducted
post hoc analyses to address this possibility by evaluating
changes in the prevalence of MetS (NCEP:ATPIII 2001 cri-
teria) after treatment with either lifestyle (diet � exercise-
induced weight loss) or metformin (103). They evaluated the
incidence of new MetS cases and resolution of existing MetS
cases compared with placebo treatment in participants (n �
3234) of the DPP trial. Because IGT was a primary inclusion
criterion for entrance into the DPP trial, the majority (53%)
of the participants met the criteria for MetS at baseline (103).
Incidence of MetS was reduced by 41% in the lifestyle group
and by 17% in the metformin group compared with placebo
(103). Among participants who met the MetS criteria at base-
line, by 3 yr MetS resolved in 18% of placebo, 23% of met-
formin, and 38% of the lifestyle group (103). Whether these
treatment effects apply to a non-IGT population remains
unknown. However, in a small study of obese (BMI �30
kg/m2) older (age �65yr) women and men randomized to a
similar lifestyle intervention (n � 17) or a control group (n �
10) for 26 wk, MetS resolved in 10 of 15 cases in the treatment
group compared with no cases in the control group (103, 104).
Whether reducing the incidence of MetS leads to a reduction
in T2D and CVD-related morbidity and mortality remains
unknown.

IV. Pathophysiology

As previously discussed, the primary purpose of identi-
fying the MetS was to identify a clustering of features that
were associated with increased CVD risk. As the term syn-
drome implies, a specific causative etiology to the MetS is not
clear, nor was a common, unifying pathophysiological cause
of the MetS necessarily intended. Nevertheless, abdominal
adiposity and insulin resistance appear to be at the core of the
pathophysiology of the MetS and its individual components.
Thus, the purpose of this section is to review how abdominal
adiposity and insulin resistance may contribute to the patho-
physiology of the MetS.

A. Insulin resistance: a conceptual prologue

Insulin is a pleiotropic molecule that has effects on amino
acid uptake, protein synthesis, proteolysis, adipose tissue
triglyceride lipolysis, lipoprotein lipase activity, very low-
density lipoprotein (VLDL) triglyceride secretion, muscle
and adipose tissue glucose uptake, muscle and liver glycogen
synthesis, and endogenous glucose production. Individuals
are generally defined as insulin sensitive or insulin resistant
by their response to an oral or iv glucose or insulin stimulus
(105). Characteristics of the insulin-sensitive phenotype in-
clude a normal body weight (106) without abdominal or
visceral obesity (5, 107), being moderately active (108), and
consuming a diet low in saturated fats (109). Alternatively,
insulin-resistant individuals demonstrate impaired glucose
metabolism or tolerance by an abnormal response to a glu-
cose challenge, elevated fasting glucose levels and/or overt
hyperglycemia, or reductions in insulin action after iv ad-
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ministration of insulin (euglycemic clamp technique) with
decreased insulin-mediated glucose clearance and/or reduc-
tions in the suppression of endogenous glucose production.
In general, the characteristics of this phenotype are more
likely to include being overweight or obese (106, 110), being
sedentary (108), and consuming a diet high in total or sat-
urated fats (109).

Insulin sensitivity, however, is not a simple dichotomy of
being insulin sensitive or insulin resistant, but rather exists
on a continuum. Moreover, the ability of the pancreas to
secrete insulin in response to a glucose challenge may also
reflect insulin resistance at the level of the �-cell. To define
this, Bergman (111) proposed the disposition index, a quan-
titative measure that describes the relationship between
�-cell sensitivity and insulin sensitivity (112). In metaboli-
cally normal individuals, changes in insulin sensitivity are
accompanied by compensatory alterations in the response of
the �-cell to glucose. In practice, disposition index is defined
as the product of the insulin sensitivity index and �-cell
function as measured by the acute insulin response to glu-
cose, a relationship that is typically plotted as an inverse
hyperbola. The movement along the continuum is more com-
plicated than the model implies, and the molecular mecha-
nism(s) by which insulin sensitivity and �-cell function are
coregulated to create a homeostatic environment are not well
understood.

B. Obesity as a “driving force” in the prevalence of insulin
resistance

The worldwide increase in the prevalence of obesity in the
recent decades is startling and is likely a cause of the rising
incidence of insulin resistance and the MetS (7, 8, 113–115),
as well as CVD and T2D (7). Although not all overweight or
obese individuals are metabolically unhealthy, the majority
are insulin resistant (116). Indeed, many experts assert that
the MetS would never have been put forth if the obesity
epidemic had not become the public health concern that it is
today (113). In particular, the combination of obesity, phys-
ical inactivity, and consumption of an atherogenic diet is
believed to lead to insulin resistance (117). In this state of
insulin resistance, normoglycemia is initially maintained by
a modest increase in �-cell mass and/or an increase in insulin
secretory capacity (8, 118). Although the mechanism for this
compensation is unclear, there is recent evidence supporting
glucose signaling as a dominant force in this process (119);
it is also acknowledged that genetic factors may be involved
(120, 121). However, the loss of insulin secretory capacity in
the natural history of T2D is likely an admixture of �-cell
dysfunction in addition to reductions in �-cell mass (122). If
the increasing �-cell function and/or mass is successful long-
term as a compensatory mechanism to obesity and insulin
resistance, T2D could be prevented for an undetermined
amount of time, despite hyperinsulinemia as a consequence.

C. Insulin resistance in adipose tissue

Adipose tissue insulin resistance appears to be important
to the pathophysiology of the MetS (7, 8, 113, 123, 124).
Specifically, a larger, expanded adipose tissue mass often

results in an increased turnover of free fatty acids (FFAs)
(125, 126) (Fig. 3). In the setting of insulin resistance and
expanded adipose tissue triglyceride stores, the process of
FFA mobilization (lipolysis) from stored adipose tissue tri-
glyceride is accelerated (7, 127). Under normal conditions,
insulin inhibits adipose tissue lipolysis; however, in the set-
ting of insulin resistance, insulin is unable to properly sup-
press lipolysis, resulting in relatively more FFA being liber-
ated into the plasma (113). Although it is well accepted that
this process is mediated by hormone-sensitive lipase (HSL)
(128), recent evidence points to adipose triglyceride lipase as
playing an additional role; and collectively these two hor-
mones account for 95% of triglyceride hydrolysis (129). In
obese subjects, insulin resistance and hyperinsulinemia are
strongly associated with decreased adipose triglyceride
lipase and HSL mRNA and protein expression, an effect
found to be independent of fat mass (130). There is also
evidence supporting a genetic predisposition for insulin re-
sistance and T2D linked to the HSL gene (131).

Not only does insulin resistance appear to cause FFA to
rise, but elevated FFA levels also appear to cause insulin
resistance. Substantial evidence has accumulated to suggest
that the visceral depot contributes to increased FFA turnover
and insulin resistance (5, 132–136). Specifically, visceral adi-
pocytes are more sensitive to catecholamine-stimulated li-
polysis than sc adipocytes (137). Because the venous drain-
age of the visceral adipose tissue depot is directly into the
portal system (136), it has been hypothesized that in visceral
obesity the liver is bathed with fatty acids and consequently
becomes insulin resistant (“portal theory”) (113, 138).

Another manner in which adipose tissue contributes to the
pathophysiology of the MetS is through the excessive release
of proinflammatory cytokines. The source of these cytokines
in adipose tissue is debated, with controversy surrounding
the relative roles of adipocytes vs. monocyte-derived mac-
rophages (139, 140). Since the earliest report of the presence
of monocyte-derived macrophages in human adipose tissue
by Ferrante and colleagues (141), it is now clear that larger
fat cells also produce more cytokines (142). Not only are
circulating cytokines from adipose tissue important to insu-
lin action in other tissues such as the liver or skeletal muscle,
but paracrine effects of the cytokines may also modify insulin
action locally in adipose tissue (143, 144).

D. Insulin resistance in the liver

The liver plays a major role in substrate metabolism. In-
creases in FFA flux have been shown in numerous models to
impair hepatic insulin action (138). This includes increases in
hepatic glucose output, the synthesis of proinflammatory
cytokines, and major changes in lipoprotein metabolism. In
the liver, the increased FFA flux must be oxidized or stored.
Insulin, under normal physiological conditions, increases the
gene expression of a number of enzymes central to triglyc-
eride biosynthesis (145), but also reduces VLDL triglyceride
and apolipoprotein (apo) B production and secretion, an
effect largely attributable to reductions in adipose tissue
lipolysis (146). Another intrahepatic effect of insulin is to
enhance apo B degradation (147). In the liver of insulin-
resistant patients, FFA flux is high, triglyceride synthesis and
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FIG. 3. Pathophysiology of the Metabolic Syndrome and insulin resistance. A, FFA are released in abundance from an expanded adipose tissue
mass. In the liver, FFA result in increased production of glucose and triglycerides and secretion of VLDL. Associated lipid/lipoprotein
abnormalities include reductions in HDL-C and increased density of LDL. FFA also reduce insulin sensitivity in muscle by inhibiting
insulin-mediated glucose uptake. Associated defects include a reduction in glucose partitioning to glycogen and increased lipid accumulation.
Elevated circulating glucose and to some extent FFA increase pancreatic insulin secretion, resulting in hyperinsulinemia. Hyperinsulinemia
may result in enhanced sodium reabsorption and increased sympathetic nervous system activity and may contribute to hypertension, as might
increased levels of FFA. B, Superimposed and contributory to the insulin resistance produced by excessive FFA is the paracrine and endocrine
effect of the proinflammatory state. Produced by a variety of cells in adipose tissue, including adipocytes and monocyte-derived macrophages,
the enhanced secretion of IL-6 and TNF-� among others results in more insulin resistance and lipolysis of adipose tissue triglyceride stores,
resulting in increased circulating FFA. IL-6 and other cytokines also are increased in the circulation and may enhance hepatic glucose
production, the production of VLDL by the liver, and insulin resistance in muscle. Cytokines and FFA also increase the production of fibrinogen
and PAI-1 by the liver, complementing the overproduction of PAI-1 by adipose tissue. This results in a prothrombotic state. Reductions in the
production of the antiinflammatory and insulin-sensitizing cytokine adiponectin are also associated with the metabolic syndrome and insulin
resistance. [Reproduced from R.H. Eckel et al.: Lancet 365:1415–1428, 2005 (113) with permission from Elsevier.]
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storage are increased, and excess triglyceride is secreted as
VLDL (148).

For the most part, it is believed that the dyslipidemia
associated with insulin resistance is a direct consequence of
increased VLDL secretion by the liver (147). This may explain
why increases in plasma apo B are variably associated with
the MetS in the absence of increases in LDL-C (149). In ad-
dition to overproduction of VLDL by the liver, alterations in
lipoprotein lipase (LPL) have been associated with the MetS.
In a large family-based population of Mexican-Americans
who were genotyped at six polymorphisms in the LPL gene
that define the most common haplotypes in the population,
specific LPL haplotypes showed linkage to glucoregulatory
aspects of insulin action (150). Other reports linking the LPL
gene to the MetS have been published (120, 151, 152). Al-
though there is also evidence that an inverse relationship
exists between pre-heparin LPL mass and insulin resistance
or the MetS (153, 154), there is little evidence at present that
reductions in post-heparin LPL activity (the active enzyme)
occur in the MetS (155, 156). This may be a consequence of
the tissue-specific regulation of LPL by insulin (157).

Hypertriglyceridemia is typically associated with reduc-
tions in HDL-C. This in part relates to the transfer of cho-
lesteryl ester from the core of triglyceride-rich lipoproteins to
HDL-C, a process catalyzed by cholesteryl ester transfer pro-
tein (CETP) (7, 113, 158). This generates a smaller, triglyc-
eride-rich HDL-C that is a better substrate for hepatic lipase,
which results in a particle that is more rapidly cleared by the
kidney (159). CETP gene polymorphisms influence plasma
CETP activity and plasma HDL-C concentrations, a relation-
ship that in several reports has been associated with the
presence of abdominal obesity and some features of the in-
sulin resistance syndrome (160–162). In the setting of hy-
pertriglyceridemia, LDL-C particles are also triglyceride-
enriched, small, and dense. Evidence supports an association
of small dense LDL-C with CVD (163, 164). Of interest, the
MetS has been associated with increased CETP mass in men,
and possibly reduced LDL-C particle diameter in addition to
reduced HDL-C (165). As previously noted, hepatic lipase
plus another member of the lipase gene family, endothelial
lipase, have moderate to substantial phospholipase activities,
respectively, and are important in HDL-C catabolism. More-
over, endothelial lipase is linked to the proinflammatory
state (166). Evidence also relates increases in hepatic lipase
to CVD events (167).

Hepatic steatosis is related not only to insulin resistance
but also to the MetS. This includes simple deposition of
excessive hepatic fatty acids as triglycerides in the liver as
well as a more advanced and inflammatory lesion, nonal-
coholic steatohepatitis (NASH) (168). Recent studies empha-
size the role of insulin resistance, oxidative stress, lipid per-
oxidation, and cytokines in the development of NASH. At
present, therapies of hepatic steatosis directed at improving
insulin action implicate the importance of insulin resistance
in the etiology of excessive hepatic fat accumulation (169).

E. Insulin resistance in muscle

In muscle, increased plasma FFA disrupt the glucose-fatty
acid cycle (125, 170, 171). The predominant defect in insulin

action in skeletal muscle relates to an inhibitory effect of this
increase in plasma FFA on insulin-mediated glucose trans-
port (172–174). It has also been hypothesized that triglyceride
accumulation in skeletal muscle plays a direct role in the
etiology of insulin resistance (124). There is also evidence that
the degree of whole body insulin sensitivity is inversely
correlated with im triglyceride content (124, 175) (Fig. 3). Yet,
muscle triglyceride may only be a marker of other related
mediators of insulin resistance in muscle, e.g., ceramide (176).
Moreover, after insulin sensitivity is improved by exercise or
weight reduction, muscle triglyceride content changes little
if at all (177, 178).

F. Hypertension and insulin resistance

The relationship between insulin resistance and hyperten-
sion has been established (179–181) and relates to several
potentially different mechanisms. First, it is important to note
that insulin is a vasodilator when given iv to people of
normal weight (182), with secondary effects on sodium re-
absorption in the kidney (183). Evidence indicates that so-
dium reabsorption is increased in whites but not Africans or
Asians with the MetS (184). In the setting of insulin resis-
tance, the vasodilatory effect of insulin can be lost (185), but
the renal effect on sodium reabsorption preserved (186).
Fatty acids themselves can mediate relative vasoconstriction
(187). Moreover, the infusion of fatty acids into the portal
vein activates the sympathetic nervous system and elevates
blood pressure in rodents (188). Insulin also increases the
activity of the sympathetic nervous system (189), an effect
that might also be preserved in the setting of insulin resis-
tance (190). However, when assessed by concentrations of
fasting insulin or the homeostatic model assessment
(HOMA) (191), insulin resistance contributes only modestly
to the increased prevalence of hypertension in the MetS (192).
Because adipose tissue is a source of angiotensinogen (193),
it is not a surprise to note the association of hyperaldoste-
ronism with hypertension and the MetS (194). Recent evi-
dence also suggests that elevations in adipocyte-derived re-
sistin and leptin may contribute to the pathogenesis of
hypertension in patients with insulin resistance (195, 196).

G. Other contributors to insulin resistance (nocturnal FFA
flux: sympathetic nervous system)

In response to any kind of stress, emotional and physical,
lipolysis is stimulated via �1 receptors, thus liberating FFA
from adipose tissue (197). It has further been demonstrated
that in the setting of obesity, sympathetic nervous system
activation is exaggerated, adding to the rise in FFA concen-
tration (198–200). In diet-induced obese canines, there is
evidence of an apparent pulsatile release of FFA from the
visceral depot and a consequential, sustained elevation of
nocturnal FFA in response to a moderate fat feeding (138,
201). Whether or not a similar response occurs in humans
remains unclear, but it is possible that these fatty acid pat-
terns, diet- and physiologically-induced, play a causal role in
the development of insulin resistance and the MetS.
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H. Proinflammatory molecules, ER stress, and their roles in
insulin resistance and the metabolic syndrome

1. Proinflammatory molecules. It is well documented that the
MetS is associated with an elevated inflammatory state (202).
This is evidenced by the presence of elevated concentrations
of inflammatory molecules including C-reactive protein
(CRP), TNF�, plasma resistin, IL-6, and IL-18 (203–207), con-
sistent with the increase in adipose tissue mass characteristic
of the MetS. Conversely, as is seen in obesity, levels of the
antiinflammatory adipokine adiponectin are depressed in
the MetS (204, 205, 207). In addition, as the number of the
MetS components an individual exhibits increases, inflam-
matory markers, including CRP (208, 209), TNF� (205), IL-18
(210), and plasminogen activator inhibitor-1 (PAI-1) activity
(211) also increase. Individual inflammatory markers are also
associated with singular components of the MetS, as detailed
below.

CRP is a general marker of inflammation, making it suit-
able to assess in individuals with the MetS. Elevated levels
of CRP are associated with increased WC (208), insulin re-
sistance (212), BMI (213, 214), and hyperglycemia (204, 208)
and are increased with the number of the MetS components.
In addition, it has been demonstrated that regardless of the
presence or degree of the MetS in an individual, CRP levels
independently predicted the occurrence of future CVD
events (209). Because the MetS has been linked with a greater
chance of future CVD events (215), CRP levels may be an
important independent predictor of unfavorable outcomes in
the MetS.

TNF� mRNA is expressed to a significantly greater degree
in the adipose tissue of obese humans in comparison with
those who are lean. This difference is abated with weight loss,
thereby supporting the observations of elevated TNF� in the
MetS (216). The degree of TNF� mRNA adipose tissue ex-
pression is positively correlated with plasma insulin, indi-
cating that the amount of TNF� present in adipose tissue may
be related to insulin resistance (216). Plasma TNF� is also
positively associated with fasting insulin and insulin resis-
tance (HOMA), as well as body weight, WC, and triglycer-
ides; a negative association exists between plasma TNF�
and HDL-C (205). TNF� neutralization has differential
effects on critical adipokines and body composition indi-
ces; thus, it improves inflammatory markers and total
adiponectin in patients with the MetS without improving
insulin sensitivity (217).

Resistin is expressed in adipocytes and, most notably, in-
flammatory cells in humans (218). It has been linked to obe-
sity, T2D, inflammation, and atherosclerosis, although the
results of animal and human studies have been at variance.
Serum resistin is highly heritable and has some common
genetic background with traits related to insulin resistance,
reinforcing the hypothesis that this adipokine may play a
pathogenic role in insulin resistance-related abnormalities,
including the MetS, T2D, and CVD (219). Elevated resistin
levels in the MetS have been observed, and plasma resistin
is positively associated with WC (203), systolic blood pres-
sure (203, 208), and triglycerides (203, 208), whereas it is
negatively associated with HDL-C (203, 208). Resistin shows
significant BMI-dependent associations with insulin resis-

tance and factors linked with obesity and inflammation in
patients with T2D (220).

IL-1� genetic variants are associated with measures of
chronic inflammation and risk for the MetS, and genetic
influences are more evident among subjects with low (n-3)
polyunsaturated fatty acid (PUFA) intake (221). IL-1� re-
duces insulin receptor substrate-1 (IRS-1) expression at a
transcriptional level through an ERK-dependent mechanism
and at a posttranscriptional level independently of ERK ac-
tivation. By targeting IRS-1, IL-1� is capable of impairing
insulin signaling and action and may thus participate in
concert with other cytokines in the development of insulin
resistance in adipocytes (222).

IL-6 is released by both adipose tissue and skeletal muscle
in humans (92, 223) and, despite its role as both an inflam-
matory and an antiinflammatory molecule, has been shown
to be positively associated with BMI, fasting insulin, and the
development of T2D (224, 225) and negatively associated
with HDL-C (226). Elevated IL-6 correlates temporally with
increases in AMP kinase activity in multiple tissues (227) and
has potential systemic impact on both glucose and lipid
metabolism (228). The detriment in insulin signaling medi-
ated by IL-6 is thought to occur at the level of IRS-1 because
myotubes incubated with IL-6 have demonstrated a reversal
of IRS-1 tyrosine phosphorylation induced by insulin (229).

IL-10 is a major antiinflammatory cytokine that has been
associated with insulin resistance, obesity, MetS, and T2D
(230, 231). IL-10 gene polymorphisms are also identified in
the polycystic ovary syndrome (232). Serum IL-10 levels are
significantly correlated with IL-6, CRP, and TNF-� levels, but
not with adiponectin in healthy individuals. However, IL-10
is significantly correlated with adiponectin, especially in the
subjects with the MetS. Thus, IL-10 may be involved in the
inflammatory network of the MetS (207, 233).

The pleiotropic proinflammatory cytokine IL-18 plays a
role in the inflammatory cascade, promoting both TNF� and
IL-6 production (234). It is positively associated with BMI,
WC, triglycerides, systolic and diastolic blood pressure, fast-
ing glucose and insulin, and negatively associated with
HDL-C in a nondiabetic Australian population (210). The GC
genotype of the IL-18 �137 G/C polymorphism and the
circulating IL-18 levels are independently associated with
raised blood pressure, and fasting IL-18 levels are associated
with the other metabolic risk factors for CVD in normal-
weight and obese black South African women (235). A com-
mon IL-18 haplotype is associated with higher BMI in indi-
viduals with T2D and CVD (236). An inverse correlation
between IL-18 and the antiatherogenic adipokine adiponec-
tin has been reported in obesity, insulin resistance, CVD, and
the MetS (237). IL-18 suppresses adiponectin expression in
3T3-L1 adipocytes via a novel signal transduction pathway
involving ERK1/2-dependent nuclear factor of activated T-
cells, cytoplasmic, cacineurin dependent 4 (NFATc4) phos-
phorylation (238). A report from the large population-based
Dallas Heart Study showed that in univariate analysis, IL-18
levels were associated with traditional CVD risk factors and
particularly with components of the MetS. In multivariate
analyses, IL-18 remained associated with multiple com-
ponents of the MetS but not with coronary artery calcium
or aortic plaque (239).
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Visfatin (also known as pre-B-cell colony-enhancing fac-
tor) is an adipokine that is highly expressed in visceral fat.
Plasma visfatin has been reported to correlate with the de-
gree of visceral adiposity in humans (240) and has been
proposed as a surrogate marker for visceral fat accumulation
in obese children (241, 242). There is a significant association
between plasma visfatin and visceral visfatin mRNA expres-
sion (243). Associations between circulating visfatin and
characteristics of the MetS, therefore, may be directly related
to an expanded visceral adipose mass or as a result of in-
creased expression of visfatin in visceral adipose tissue.
Plasma visfatin levels are elevated in individuals with the
MetS (244) and are associated with several components of the
MetS. Serum visfatin is positively associated with BMI (245),
and visfatin mRNA expression in visceral adipose tissue is
associated with BMI and percent body fat (243). Interestingly,
results from the recent PIOSTAT study suggest that although
visfatin has been postulated as a good marker of the MetS,
insulin resistance and CVD risk factors are not associated
with visfatin levels, and regulation of visfatin secretion oc-
curs through biochemical pathways independent from those
influenced by pioglitazone or simvastatin (246).

The antiinflammatory molecule, adiponectin, is negatively
associated with body weight (205), WC (205), triglycerides
(204, 205, 247), BMI (247), fasting insulin (205), insulin re-
sistance (HOMA) (204, 205), and systolic and diastolic blood
pressure (247), whereas a positive association exists between
adiponectin and HDL-C (204, 205, 247, 248). Adiponectin is
a powerful inducer of other proinflammatory cytokine (IL-
1�, IL-6, IL-8, and TNF-�) production by adipose tissues and
macrophages (249). Transgenic mice that express human adi-
ponectin in their liver show significantly decreased weight
gain associated with less fat accumulation and smaller adi-
pocytes in both visceral and sc adipose tissues. These mice
also have increased energy expenditure, longer life span, and
reduced morbidity and mortality when fed a high-calorie
diet (250). Of note, high molecular weight (HMW) adiponec-
tin exhibits a significant association with central fat distri-
bution, whereas low molecular weight adiponectin does not
(251). Additionally, the HMW/total adiponectin ratio been
shown to have a greater power to predict the presence of both
insulin resistance and the MetS in comparison with total
plasma adiponectin (252). Therefore, in addition to total adi-
ponectin levels, measurement of HMW adiponectin may also
be valuable for the prediction of the MetS.

Interestingly, in contrast to disorders typically associated
with excess adiposity, adiponectin levels are elevated in clas-
sic chronic inflammatory/autoimmune diseases, i.e., rheu-
matoid arthritis, systemic lupus erythematosus, inflamma-
tory bowel disease, type 1 diabetes, and cystic fibrosis (253).
In these patients, adiponectin levels correlate positively
rather than negatively with inflammatory markers. In the
MetS, however, plasma adiponectin levels are reduced (254,
255). Finally, of great interest at present is whether the pri-
mary proinflammatory defect in adipose tissue in the MetS
is the large adipocyte, insulin resistance, the infiltration and
activity of monoctye-derived macrophages, or the reduction
in adiponectin synthesis and secretion.

2. Endoplasmic reticulum (ER) stress. The ER is responsible for
the folding of unfolded proteins delivered to its lumen. Un-
der stress conditions (ER stress), however, unfolded proteins
can accumulate in the ER lumen, activating the unfolded
protein response. As a result, ER chaperone gene transcrip-
tion is up-regulated to increase protein-folding capacity and
reduce the ER stress (256). Despite this mechanism being in
place, ER stress can increase the activity of the serine/thre-
onine kinase c-Jun N-terminal kinase (154). An increase in the
activity of c-Jun N-terminal kinase can lead to serine phos-
phorylation of IRS-1, down-regulating insulin signaling and
possibly contributing to the development of insulin resis-
tance (257). Stimuli that contribute to ER stress may therefore
also be indirectly promoting the development of components
of the MetS such as insulin resistance (258).

I. Animal models of the metabolic syndrome

Animal models can be helpful in further understanding
the potential pathophysiology of the MetS. Murine models in
particular have become quite useful tools in recent years
because the entire mouse genome is now sequenced, and a
large number of transgenic and knockout models are readily
available. There are a number of limitations with these mod-
els, however, that must be considered. Rodent lipid physi-
ology, for example, is significantly different compared with
humans. Rodents carry most of their cholesterol in HDL, not
LDL; thus, a low level of HDL-C is an unusual finding. Blood
pressure is usually not measured in these models, again
limiting the use of the “human” clinical definition of the
MetS. Nevertheless, there remains much to be learned from
animal models that may be applicable to mechanisms of the
MetS in humans.

1. Mouse models. Historically, there were a number of murine
models that exhibited many of the components of the MetS,
i.e., leptin-deficient ob/ob and leptin-resistant db/db mice (259,
260). More recently, when ob/ob mice were crossed with the
LDL-receptor-deficient mouse, the features of the MetS
including obesity, dyslipidemia, hypertension, insulin re-
sistance, and IGT, and/or diabetes plus hypercholester-
olemia resulted in more oxidative stress and atheroscle-
rosis (261, 262).

A number of less-well known polygenic mouse models
have a mixture of components of the MetS and its associated
diseases. Some of these features are summarized in Table 7.
It is worth noting that mice with different genetic back-
grounds have a variable propensity to develop the MetS in
response to changes in diet composition (263, 264). For in-
stance, when C57Bl/6 (B6) and 129S6/SvEvTac (129) mice
were placed on a low-fat or high-fat diet for 18 wk, the 129
strain developed features of the MetS, notably obesity, hy-
perinsulinemia, and glucose intolerance only on the high-fat
diet, whereas the B6 strain developed these features on both
diets (265).

For a number of years, the Jackson Laboratory has carried
out a comprehensive assessment of genetic susceptibility to
the MetS in inbred mice when challenged with a high-fat,
high-cholesterol diet (266). A high-throughput protocol was
set up to evaluate female and male mice from 43 inbred
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strains for 10 traits including all the major criteria of MetS
while mice consumed the diet for 18 wk. A few strains of mice
developed a phenotype with a plethora of metabolic abnor-
malities remarkably similar to the human MetS (strains
CAST/EiJ, CBA/J, and MSM/Ms). Other strains had a more
limited phenotype, i.e., severe obesity (AKR/J and KK/HIJ) vs.
protection from obesity (WSB/EiJ); severe dyslipidemia
(MOLF/EiJ) vs. no dyslipidemia (CZECHII/EiJ for males and
D2 for females); and severe insulin resistance (KK/HIJ) vs.
being spared from insulin resistance (A/J). Overall, the dis-
crepant phenotypes within the same environmental expo-
sures may prove useful in dissecting the genetic and related
molecular mechanisms underlying the MetS and its compo-
nents (267).

Many other murine models of the MetS have resulted from
modifications of single genes. Although some of these mod-
els have been summarized in a previous review on the MetS
(268), it is our intent in this review to provide an extensive
list of the murine models of the MetS and characterize each
of the models over the period of phenotypic development.
The mouse models listed in Table 7 are characterized by the
number of MetS components they demonstrate: glucose in-
tolerance/insulin resistance; abnormalities in lipids (in-
creased triglycerides and/or FFA); and increased blood pres-
sure. Models with all three components are listed in Table 7
first (269–273), followed by those with two (227, 274–297),
and finally those with only insulin resistance (298–311). The
final mouse grouping is animals with a polygenic back-
ground that meet the criteria for the MetS as stated (312–319).
Details for each of the models including murine strain, gen-
der, age, environmental exposure including diet, and com-
ponents of the MetS phenotype plus related structural
and/or functional abnormalities when present are all
provided.

2. Rat models. A number of models of the MetS have been
identified in rats. The Zucker fatty rat was among the first
identified (320). Subsequently, a number of studies have been
published to examine the impact of diet on the phenotypic
development of the MetS (321–326). Wistar Ottawa Karls-
burg W rats (WOKW) develop all components of the MetS.
Genetic analysis of this rat model has identified potential
major quantitative trait loci (QTL) for glucose metabolism on
chromosome 3, dyslipidemia on chromosomes 4 and 17, and
obesity on chromosomes 1 and 5 (327). Moreover, the severe
insulin resistance predominant in epididymal adipose tissue
of these rats was associated with a 10-fold decrease in adi-
pocyte adiponectin gene expression and decreased peroxi-
some proliferator-activated receptor (PPAR)-� gene expres-
sion, but increased FOX01 gene expression compared with
control rats (328). Moreover, the MetS in WOKW rats was
associated with impaired coronary vasodilatation due to al-
tered adrenoceptor sensitivity (329).

Another example of the MetS in rats is the corpulent (JCR:
LA-cp) rat that like db/db in mice is a homozygous mutation
in the leptin receptor (330). These rats are obese, insulin
resistant, and hypertriglyceridemic. JCR:LA-cp rats, how-
ever, are prone to atherosclerosis (331–333) and also ap-
pear to be a good model to study the contribution of
postprandial lipemia to the atherosclerotic process. In

these rats, lymphatic chylomicron apoB48, chylomicron
size, fasting and postprandial plasma apo B48 area under
the curve are all elevated (334).

The Prague hereditary hypertriglyceridemic (hHTG) rat
was developed as a model of hypertriglyceridemia. Al-
though these rats are not obese, they are hypertensive, in-
sulin resistant, and glucose intolerant (335, 336). Using F2
hybrids, several QTL have been identified for hypertension
and hypertriglyceridemia (337). Another model of the MetS
in rats that includes hypertension is the Lyon hypertensive
rat (LH). These rats also have obesity, dyslipidemia, and an
increased insulin/glucose ratio. This rat strain has been used
to identify linkage of body weight, blood pressure, and renal,
metabolic, and endocrine phenotypes (338). This is a renin-
dependent model of hypertension in which low-dose (non-
antihypertensive) angiotensin-converting-enzyme inhibitor
therapy affords significant and durable renal protection. A
total genome scan in the offspring of an F2 intercross between
the hypertensive and normotensive Lyon strains has iden-
tified a series of QTL for the MetS, body weight, blood pres-
sure, lipid metabolism, and renal function (339, 340). Other
hypertensive rat models of the MetS include SHR/NDmc-
cp(cp/cp) (341) and SHROB (spontaneously hypertensive,
obese rat) (342).

3. Other animal models. Of interest to pet owners and veter-
inarians alike is the fact that obesity in dogs and cats has
increased in recent years (343), and dogs in particular are
models of the MetS. The canine obesity model closely reca-
pitulates the relationship between human visceral adiposity
and insulin resistance. The work of Bergman et al. (138)
supports the portal theory of insulin resistance, in which FFA
from visceral adipose tissue directly enter the liver and un-
favorably modify insulin action. Sympathetic nervous sys-
tem hyperactivity in this model of obesity may also contrib-
ute to excessive FFA release, hypertension, and insulin
resistance. As noted previously, a nocturnal increase in
plasma FFA levels may account for both insulin resistance
and compensatory hyperinsulinemia.

Obesity is common in cats and is a risk factor for diabetes.
The prevalence of diabetes has increased concomitantly with
the increase in obesity, and diabetes is now seen in approx-
imately 0.5–1% of cats (344). Cats develop a form of diabetes
that is similar to T2D in humans, characterized by islet amy-
loid accumulation and loss of �-cell mass (345). From more
recent studies in felines, it appears that glucose metabolism
in cats is similar to that in humans; however, lipid metab-
olism is quite different (346). This may explain why the MetS
in cats is less frequent than in dogs and is not frequently
studied.

4. Primate models. Historically, nonhuman primates (NHPs)
have been used for a variety of studies on diabetes mellitus.
Spontaneous, natural forms of diabetes have been well doc-
umented in several species, and diabetes has also been in-
duced in NHPs with drugs and diets. Hyperglycemia and
impaired glucose clearance are also commonly associated
with hyperlipidemia in primates (347).

Old World NHPs first develop obesity and then insulin
resistance. Like humans, when either a relative or absolute
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deficiency in insulin production occurs, fasting glucose
concentrations increase, and diabetes follows. NHPs with
diabetes have detrimental changes in plasma lipid and
lipoprotein metabolism and concentrations, lipoprotein
composition, and glycation of proteins, all of which likely
contribute to an accelerated rate of atherosclerosis develop-
ment. The prevalence and heritability of obesity and risk
factors associated with the MetS in a pedigreed colony of
Vervet monkeys has been reported recently (348). Vervet
monkeys demonstrated obesity, insulin resistance, and as-
sociated changes in plasma lipids even while consuming a
low-fat (chow) diet. Female monkeys were at a higher risk for
central obesity and dyslipidemia.

Rhesus monkeys have also been used to study metabolic
diseases. During healthy aging, rhesus monkeys demon-
strate decreases in insulin sensitivity and reductions in
HDL-C. In monkeys that develop diabetes, significant de-
creases in glucose tolerance were evident by middle age (age,
�14 yr), with elevations in fasting insulin and then a pro-
gressive decline in insulin secretion with aging (349). With
aging, rhesus monkeys with diabetes also demonstrated dys-
lipidemia and shifts in lipoprotein particle size and number
as measured by nuclear magnetic resonance (350). In hu-
mans, Bjorntorp and Rosmond (351) were among the first to
suggest that the MetS was caused by stress. In a model of
early-life stress using variable foraging demand, food inse-
curity was imposed on NHP mothers for 16 wk, initiated
when their nursing offspring were 3–5 months of age. Al-
though variable foraging demand does not restrict food
availability or the infant’s growth, this modification in nu-
trient access during rearing, however, did result in a range
of neurobiological abnormalities in the offspring including
greater weight gain, BMI, abdominal circumference, and glu-
cagon-like peptide-1, and decreased glucose disposal rates
during a hyperinsulinemic-euglycemic clamp (352).

J. Genetic determinants of the metabolic syndrome in
humans

Increasing evidence suggests that there is genetic basis for
the MetS. As with most complex traits, however, the asso-
ciations are quite weak, and the replication of findings has
been poor. Some recently published reviews have summa-
rized the results from multiple genome-wide scans involving
different cohorts (353–355). From these studies, familial ag-
gregation is most evident for the individual components of
the MetS; however, some studies suggest that specific genes,
such as those that encode for 11�-hydroxysteroid dehydro-
genase, adiponectin, and the �3-adrenergic receptor, may
also predispose to the development of the MetS (356–358).
Furthermore, it has been suggested that the risk of the MetS
may be modified by dietary fatty acid composition (359).

Of the five subphenotypes defining MetS, all are known
to have strong genetic components (typically 50 – 80% of
population variation). For example, in a study among a
population of 163 individuals from Yucatan, Mexico,
which has a high prevalence of obesity, T2D, and dyslip-
idemia, a polymorphism in the insulin gene was associated
with the presence of at least one abnormality related to the
MetS (360).

A genome-wide scan for glucose homeostasis in subjects
without diabetes has been carried out as part of the Insulin
Resistance Atherosclerosis Study (IRAS) family study (361).
Significant evidence for linkage of insulin sensitivity, dispo-
sition index, and acute insulin response to glucose to differ-
ent regions on chromosome 11 and 12 was observed. These
results provide impetus for future positional cloning of QTL
to identify the genetic determinants of the MetS.

Another study investigated the heritability of determi-
nants of the MetS among healthy Arabs of the Oman
Family Study (362). Results from this study indicated that
weight, BMI, and HDL-C level were under significant
genetic influence, whereas other determinants such as in-
sulin resistance, abdominal obesity, diastolic blood pres-
sure, and triglyceride levels seemed to be more environ-
mentally driven.

The prevalence rates of T2D and CHD in the Ontario
Oji-Cree tribe are among the highest in the world. Studying
515 adult and 115 adolescent Oji-Cree subjects revealed that
increased WC and depressed HDL-C were the most preva-
lent MetS components, whereas increased blood pressure
was the least prevalent (363). Furthermore, different func-
tional polymorphisms in candidate genes were found to as-
sociate with the MetS in adults (AGT T174M, GNB3 825C�T,
APOC3-455T�C) and more so than in adolescents (FABP2
A54T). In a separate multiethnic study, the APOC3-
455T�C promoter polymorphism was also found to be
associated with an approximately 2-fold increased risk of
the MetS (364).

Studies defining genetic predispositions have typically
focused on older populations with MetS. A recent study in
younger populations (365) found a much stronger asso-
ciation of the PPAR-� L162V locus and triglycerides in
males than previously reported in older and less healthy
populations. Specifically, the V allele increased triglycer-
ides by 78% (P � 0.004), and this single polymorphism
accounted for 3.8% of all variation in serum triglycerides
(P � 0.0037).

The Kiel Obesity Prevention Study (KOPS) examined the
common genetic background that contributes to the cluster-
ing between insulin resistance, central obesity, and other
MetS traits. Their findings suggested that a common genetic
background contributed to the clustering of different MetS
components and central obesity or insulin resistance. Com-
mon genetic influences favor central obesity as a major char-
acteristic linking other traits (366).

A most recent report focused on the endothelial nitric
oxide synthase (eNOS) gene and its role in MetS. Previous
studies suggested that endothelium-derived nitric oxide fa-
cilitates skeletal muscle glucose uptake, and eNOS null mice
present with many phenotypes of the MetS including insulin
resistance, hypertension, and hypertriglyceridemia (367). By
using haplotype tagging single nucleotide polymorphism
analysis, it was suggested that genetic variation at the eNOS
locus was associated with features of MetS (368). Similar
single nucleotide polymorphism analysis in different popu-
lations also revealed lipid (LPIN1) gene variants (369) and
polymorphism at the IL6ST (gp130) locus (370) to be asso-
ciated with the MetS.
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V. Risks of Metabolic Syndrome

A. Cardiovascular disease

One of the primary observations regarding the clustering
of metabolic disorders was the association of these features
with increased CVD risk. It is well accepted and established
that multiple risk factors confer greater risk than a single risk
factor. In fact, the findings that led to the development of the
Framingham Risk Score (FRS) are based on this observation.
The NCEP:ATPIII emphasized that the risk for CVD can be
further reduced by the modification of risk factors beyond
LDL lowering (1). Thus the MetS was identified as a clus-
tering of factors that further increase the risk for CVD.

The vast majority of studies have found that patients with
the MetS have more CVD and are at increased risk for de-
veloping CVD (29, 371–386). A recent meta-analysis by Gami
et al. (387) that included 36 different reports found that the
overall relative risk for incident CVD events and death for
individuals with the MetS was 1.78 (95% CI, 1.58–2.00). De-
spite the power of the large sample size of this meta-analysis,
there are some concerns of confounding due to the inclusion
criteria of the selected studies. A frequently quoted study
examining this issue is from the Kuopio Ischemic Heart Dis-
ease Risk Factor Study. Finnish men without CVD were
followed for approximately 11 yr, and those with the MetS
were three to four times more likely to die of CHD, 2.6 to
three times more likely to die of CVD, and two times more
likely to die from all causes (371). In another report, U.S.
adults without prior CVD from the NHANES were followed
for approximately 13 yr. For those with the MetS, the risk
factor-adjusted proportional-hazards regression for CHD
mortality was doubled (375). Using the Framingham data-
base, the age-adjusted relative risks for CVD and CHD in
men with the MetS were 2.88 and 2.54, respectively, with
those in women being slightly lower (2.25 and 1.54, respec-
tively) (388). Scandinavian men and women with the MetS
from the Botnia Study had a 3-fold increase in risk for CHD
and stroke (372), whereas the age-adjusted risk of fatal CVD
in men and nonfatal CVD in women was increased 2-fold in
Dutch adults in the Hoorn Study (382). The Atherosclerosis
Risk in Communities (ARIC) study, which included more
minorities, also found a relative risk of CHD of 1.5 and 2 in
men and women with the MetS, respectively (379). The pres-
ence of the MetS in patients with preexisting CHD is also
associated with an increased risk for CVD events and mor-
tality (375, 389). In fact, the MetS is associated with greater
risk of CVD in patients with preexisting CHD compared with
those without known CHD (RR, 2.68 vs. 1.94) (387). Obese
individuals and those with preexisting diabetes also have a
doubling of CVD risk when the MetS is present (377, 390).
McNeil et al. (391) found that older individuals (mean age, 72
yr) with the MetS were 20–30% more likely to experience a
CVD event than those without. Finally, as one would expect,
the more components or features of the MetS that are present,
the greater the CVD risk (373, 384, 392).

There are just a few exceptions to these findings. The
Casale Monferrato Study, a study in an Italian cohort of older
individuals with T2D, found that the MetS did not predict
CVD above and beyond the risks attributed to T2D (393). The

Prospective Study of Pravastatin in the Elderly at Risk
(PROSPER), another study of older individuals aged 70–82
yr, also failed to show an association between the MetS and
increased risk of CVD (394). WC, however, was not mea-
sured in PROSPER, and HDL-C and diastolic blood pressure
(modestly) were the only components that predicted incident
CVD; neither BMI, nor systolic blood pressure, LDL-C, or
triglycerides were associated with CVD risk. Because the
prevalence of MetS plateaus in the 60s, this may not be a
study that resolves the MetS/CVD outcome controversy. A
study in a cohort of nondiabetic American Indians, The
Strong Heart Study, also found no association between either
insulin sensitivity or MetS and incident CVD (395). Event
rates were quite low overall in this cohort, as has been shown
in other studies of American Indians, potentially impacting
the power to detect differences. Finally, in a study of indi-
viduals with known stable CHD, the MetS was associated
with increased total mortality and CVD mortality in women
but did not appear to be associated with excess risk of CVD
mortality in men (396). Again, WC was not measured in this
study, which may have attenuated the relationship especially
in men. The mean BMI of those with the MetS was actually
lower (27 kg/m2) than the inclusion criteria (�30 kg/m2)
described in the methods, suggesting further methodological
problems with the identification of those with or without the
MetS. Overall, though, it appears that there is greater evi-
dence supporting the association between the MetS and CVD
risk, even in very high-risk populations.

An important question that arises regarding the associa-
tion between the MetS and CVD is whether the CVD risk in
the MetS is greater than the sum of the risk of the individual
risk factors. This question has been reviewed and debated
elsewhere (14, 397). The Framingham experience has cer-
tainly long suggested that multiple risk factors increase CVD
risk more than the sum of the individual risk factors (398).
A recent meta-analysis found that the risk for CVD is still
increased in people with the MetS, even after controlling for
the component risk factors (RR, 1.54; 95% CI, 1.32–1.79) (387).
Conversely, there are several studies that suggest that the
risk of the MetS is not greater than the sum of its parts (373,
379, 382, 399). Another important issue is whether the MetS
offers greater prediction of CVD risk than previously estab-
lished risk assessments such as the FRS (44). Analysis of the
ARIC study suggested that the MetS did not improve CHD
risk prediction beyond that predicted by the FRS (379). Wan-
namethee et al. (383) also found the FRS to be a better pre-
dictor of CHD and stroke than the MetS. On the other hand,
post hoc analysis of the Scandinavian Simvastatin Survival
Study (4S) and the Air Force/Texas Coronary Atherosclero-
sis Prevention Study (AFCAPS/TexCAPS) showed that in-
dividuals with the MetS had increased risk for major coro-
nary events irrespective of their FRS (374).

The ability of the MetS to predict the incidence of CVD
may differ according to how the MetS is defined. The 10-yr
CVD risk in the Hoorn Study was assessed using different
definitions of the MetS. The NCEP:ATPIII definition was
associated with a 2-fold increase in CVD, whereas the risk
was slightly less using the WHO, EGIR, and AACE defini-
tions (382). The NCEP:ATPIII definition was also associated
with a 2-fold increased risk for CVD compared with the IDF
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definition when several American and European cohorts
were examined (400). The meta-analysis by Gami et al. (387)
found the WHO definition to be associated with slightly
greater risk than the NCEP:ATPIII definition (2.06 vs. 1.67).
On the other hand, the NCEP, WHO, and IDF MetS defini-
tions all showed similar CVD risk in follow-up of the San
Antonio Heart Study (25).

B. Type 2 diabetes mellitus

The prevalence of T2D has tripled in the last 30 yr (401).
Currently, diabetes afflicts more than 20 million people in the
United States (402). T2D is a complex disease caused by both
environmental and genetic factors. It is marked by chroni-
cally elevated blood glucose concentrations, which result
from defects in insulin production, insulin action, or a com-
bination of both. Although insulin resistance is considered
the hallmark of prediabetes, defects in insulin secretion are
regarded as the key pathophysiological characteristic of T2D.
Although T2D is a heterogeneous disease, most patients with
T2D have insulin resistance and the MetS before onset of T2D
(403). In fact, insulin resistance, hyperinsulinemia, dyslipi-
demia, and obesity precede the progression to T2D in 75 to
85% of patients (404).

Numerous studies have examined the ability of the MetS
to predict T2D. The presence of the MetS increases the risk
(115, 405) and is highly predictive of new-onset T2D (394, 406,
407). The risk for incident T2D is up to five times higher
in individuals with the MetS compared with those without
the syndrome (397, 408). Interestingly, the presence of both
the MetS and insulin resistance has an additive effect
because these patients exhibit a 6- to 7-fold increased risk
for T2D (385).

The ability of the MetS to predict the incidence of T2D
differs according to how the MetS is defined (408). The
NCEP:ATPIII and IDF definitions consider elevated fasting
plasma glucose as an essential, but not required, criterion for
defining the presence of MetS. The WHO definition, how-
ever, requires the presence of IFG and/or IGT. The effect of
varying definitions of the MetS on the risk for T2D may be
significant because the risk for T2D conferred by either IFG
or IGT is higher than that conferred by other individual
components of the syndrome (409). Furthermore, IFG and
IGT have been shown to predict the development of diabetes,
independent of other components of the MetS (268). The
Hoorn study found that in patients without the MetS, 33% of
those with IFG only and 64.5% of those with the combination
of IFG and IGT developed diabetes over a 5.8–6.5 yr fol-
low-up (410). Additionally, Hanson et al. (407) found that
hyperinsulinemia was the strongest predictor of diabetes
incidence. This led many investigators to question whether
the syndrome’s ability to predict diabetes is due to a single
factor (i.e., insulin resistance) or whether it represents an
additive effect of multiple metabolic abnormalities.

A number of major studies have published data on the
effectiveness of the MetS to predict the incidence of diabetes.
The Insulin Resistance Atherosclerosis Study found that IDF
and NCEP:ATPIII MetS definitions predicted incidence of
diabetes as well as the WHO definition, despite the first two
not requiring the use of an oral glucose tolerance test or a

measure of insulin resistance (411). Laaksonen et al. (406)
compared the WHO and the NCEP:ATPIII definitions in a
cohort of Finnish men and found that the WHO definition
was the most sensitive of the definitions because it detected
over four fifths of prevalent and two thirds of incident cases
of diabetes, all with good specificity (0.78–0.80). Subjects in
the Framingham Offspring Study demonstrated that the
presence of the MetS (as defined by NCEP:ATPIII criteria)
accounted for approximately half of the new diabetes cases
over an 8-yr follow-up period (388). The San Antonio Heart
Study evaluated NCEP:ATPIII and a modified-WHO (with-
out an oral glucose tolerance test) definition and found that
the presence of IGT alone and the NCEP definition had
similar and greater sensitivities for identifying patients at
risk for T2D than the modified WHO definition (52, 53, and
43%, respectively. Combining IGT with the NCEP and mod-
ified WHO definitions increased the sensitivity 71 and 66%,
respectively (412).

The ability of the MetS to predict diabetes risk has also
been compared with the Diabetes Predicting Model and the
FRS. Stern et al. (413) found that, in the San Antonio Heart
Study population, the MetS was inferior to the Diabetes
Predicting Model for determining incidence of diabetes.
On the other hand, the FRS, which was developed to
predict the risk of CHD, was inferior to the MetS for
predicting incidence of diabetes in men from the British
Regional Health Study (383).

Finally, the presence of the MetS in women with gesta-
tional diabetes mellitus (GDM) substantially increases the
risk of developing T2D. GDM alone significantly increases a
woman’s risk for subsequently developing T2D (414, 415).
The conversion of GDM into T2D varies between 6 and 92%,
depending on diagnostic criteria, racial/ethnic background
of the subject sample, and duration of surveillance (416). The
presence of the MetS further increases the progression from
GDM into T2D. In a 9.8-yr follow-up study, 481 women with
prior GDM who were treated with diet alone were compared
with 1000 age-matched control women. The prevalence of the
MetS was three times higher in the prior GDM group when
compared with controls, and this persisted after adjustment
for age and BMI. As much as 67% of the GDM women were
glucose intolerant vs. only 19% in the control group, and the
prevalence of the MetS was double in the prior GDM group
vs. the control group (417). These findings are in line with a
similar study by Verma et al. (418), in which the prevalence
of the MetS was three times higher in GDM women vs.
controls after an 11-yr follow-up.

VI. Associated Conditions

There are a number of conditions associated with the MetS
that deserve brief attention here. Some of these conditions are
directly associated with the underlying excess adiposity and
insulin resistance associated with the MetS.

A. Nonalcoholic fatty liver disease

Nonalcoholic fatty liver disease (NAFLD) includes a range
of pathological features from mild steatosis to NASH to
cirrhosis. A presumptive diagnosis of NAFLD can be made
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in patients with elevated liver enzymes and/or fatty liver by
imaging in the absence of other causes of liver disease, al-
though a definitive diagnosis can only be made by liver
biopsy (419). The prevalence of NAFLD ranges from 3 to 36%
of the general population, depending on how it is defined
(420, 421). It has been suggested that 95% of obese individ-
uals and up to 70% of those with T2D have some form of
NAFLD (420). The prevalence of NAFLD is also increased in
children with obesity and insulin resistance (422). In addi-
tion, the presence of NAFLD is a strong predictor of the MetS
(421), and liver fat correlates to all of the components of the
MetS (423). In those patients with the MetS, liver fat content
is significantly increased up to 4-fold higher than those with-
out the MetS (423), and the incidence of NAFLD has shown
to be increased 4-fold in men and 11-fold in women with the
MetS (424).

Fat deposition in the liver has been shown to be primarily
due to an increased influx of fatty acids to the liver, most
likely as a result of the increased lipolysis associated with
obesity and insulin resistance and as a result of increased
hepatic de novo lipogenesis (425). Reduced fatty acid oxida-
tion and mitochondrial dysfunction and decreased export of
fat further contribute to the accumulation of liver fat (420,
426). In addition, a number of transcription factors and adi-
pokines appear to play an important role in the development
of NAFLD (427). For example, in certain models of obesity,
sterol regulatory element-binding protein 1c is up-regulated,
potentially resulting in increased conversion of glucose to
fatty acids and triglycerides (426). PPAR-�, a nuclear recep-
tor important in fatty acid uptake and oxidation, has been
shown to be underexpressed in animal models of NAFLD
(427). Adiponectin concentrations are reduced in individuals
with NAFLD, and the administration of adiponectin reverses
NAFLD in experimental models (428). Although insulin re-
sistance is associated with fat accumulation in the liver, fat
accumulation in the liver appears to result in hepatic insulin
resistance, suggesting a “dynamic” process (426). Further-
more, it has been shown that pure hepatic insulin resistance,
as demonstrated in the liver insulin receptor knockout mouse
model, is sufficient “to produce the dyslipidemia and in-
creased risk of atherosclerosis associated with the MetS”
(429). NAFLD, which may be a result of insulin resistance but
may also be a cause of insulin resistance, may then be central
to the pathophysiology of the MetS. Finally, it is less clear
why some individuals with NAFLD progress to NASH and
potentially to cirrhosis. Genetic factors are likely important,
as are the roles of cytokines such as TNF-� and oxidative
stress (420, 426).

B. Polycystic ovarian syndrome

Polycystic ovarian syndrome (PCOS) is a clinical syn-
drome that is associated with anovulation, androgen excess,
and insulin resistance. Not only do women with PCOS suffer
from problems with fertility and clinical stigmata of andro-
gen excess, but they also suffer from consequences of insulin
resistance, such as a significant risk for the development of
T2D (430) and CVD risk factors (431). There is, therefore,
significant overlap between PCOS and the MetS. There have
been debates on whether PCOS may in fact be in the con-

tinuum with the MetS. The MetS is common in women,
especially obese women, with PCOS (432). The prevalence of
PCOS is also rising, with rates reported as high as 28% in
overweight/obese women (433). The pathophysiology of the
PCOS, like the MetS, is also unclear and highly debated. The
ovary, hypothalamic-pituitary axis, and insulin resistance all
are thought to have a role in this condition (434). The insulin
resistance and obesity that are frequently found in women
with PCOS have been implicated in significant risk for CVD
and metabolic disorders. Greater than two thirds of women
with PCOS have some degree of glucose intolerance and are
therefore at high risk for developing diabetes if they do not
already have it (430, 435). Women with PCOS clearly have a
higher prevalence of CVD risk factors (436, 437). Although it
is not clear whether women with PCOS have a greater risk
for CVD events, they certainly have evidence of greater risk
for subclinical CVD (436, 438).

C. Obstructive sleep apnea

Obstructive sleep apnea (OSA) is a potentially serious
consequence of obesity and is associated with increasing
BMI. There is also an association between insulin resistance
and OSA (439, 440). OSA has also been shown to be asso-
ciated with increased inflammation (441) and reduced adi-
ponectin concentrations (442, 443). Individuals with OSA are
more likely to have the features of the MetS than those
without OSA, even when adjusted for obesity (444–446). In
addition, disordered sleep in general is associated with
weight gain and insulin resistance (439, 447–450). Some have
even suggested that OSA should be considered as a mani-
festation of the MetS (448).

D. Hypogonadism

As women with PCOS are at greater risk for the MetS, there
is also a relationship between the MetS and male gonadal and
erectile dysfunction. Men with the MetS appear to have a
greater prevalence of hypogonadism (451, 452). Conversely,
hypogonadism is a risk factor for the development of the
MetS and T2D (453). In addition, features of the MetS im-
prove with testosterone replacement (454). The MetS has also
been shown to be independently associated with a greater
prevalence of erectile dysfunction (455–458).

The prevalence of MetS increases in women after the
menopause, but whether this is the result of aging per se or
the result of changing hormonal milieu is unclear. Further-
more, it is unclear whether the menopause-related increases
in insulin resistance and dyslipidemia are the result of es-
trogen deficiency directly or occur secondary to increases in
abdominal adiposity (459). Indeed, increases in abdominal
adiposity may precede changes in insulin action and dys-
lipidemia, because visceral fat begins to increase during the
menopausal transition (460). Nevertheless, estrogen replace-
ment in postmenopausal women has been shown to improve
many components of the MetS, such as abdominal adiposity,
HDL-C, and fasting glucose (461–464) and to lower the in-
cidence of T2D (462, 465, 466). Thus, declines in sex steroids
likely contribute to the increased prevalence of the MetS in
women after menopause.
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E. Lipodystrophy

Lipodystrophies are inherited or acquired disorders char-
acterized by the loss of selective adipose tissue depots. The
pathogenesis of the lipodystrophies is complex and has been
recently reviewed elsewhere (467, 468). These patients, es-
pecially those with partial and generalized forms of lipo-
dystrophy, generally have severe insulin resistance and often
share the features of the MetS, putting these individuals at
risk for T2M, dyslipidemia, NAFLD, and CVD. Highly active
antiviral therapy for the treatment of HIV-infected patients
has been associated with the development of severe meta-
bolic disturbances and “acquired” lipodystrophy (469, 470).
These metabolic disturbances include hypertriglyceridemia,
low HDL-C, and insulin resistance reminiscent of the MetS.
The prevalence for the MetS in these patients, however, is
actually lower than in the general population due in part to
the low WC in this population (469).

F. Microvascular disease

Although the MetS is clearly associated with CVD, it is less
clear whether patients with the MetS are at greater risk for
microvascular disease independent of diabetes. Approxi-
mately 8–10% of individuals with IFG and IGT but without
diabetes, most of whom have the MetS, have retinopathy
(471, 472). The MetS has also been shown to be associated
with an increased risk of chronic kidney disease (473–475)
and microalbuminuria (476–478). Moreover, the MetS has
been found to be associated with increased risk for neurop-
athy (479). For those individuals with diabetes, the MetS
appears to be associated with increased risk for all types of
microvascular disease (480, 481), although a recent post hoc
analysis of the United Kingdom Perspective Diabetes Study
did not find the MetS to be associated with a greater risk for
microvascular disease in individuals with T2D (482).

VII. Therapeutics

A discussion on the therapeutic options for managing the
MetS must be prefaced with the understanding that there are

no randomized controlled trials published to help guide
specific recommendations for managing the MetS. In addi-
tion, because it is unclear whether there is a unifying patho-
physiological mechanism resulting in the MetS, it is unclear
whether the MetS can be treated in and of itself. The follow-
ing discussion will therefore center on treating the individual
components of the MetS, with the overall goals of reducing
the risk for or preventing CVD and T2D as outlined in Table
8. Nevertheless, concentrating therapeutic efforts on treating
the excess adiposity and insulin resistance associated with the
MetS may provide the most overall success in attaining these
goals. In addition, certain therapeutic options may impact
more than one component of the MetS. The following dis-
cussion will be divided into lifestyle modification, pharma-
ceutical therapy, and surgery.

A. Lifestyle modification

1. Diet. It is well established that weight loss is beneficial for
treating all of the components of the MetS, including exces-
sive adiposity, dyslipidemia, hypertension, insulin resis-
tance, and hyperglycemia (483). The magnitude of weight
loss need not be drastic; the Finnish Diabetes Prevention
Study showed that lifestyle intervention with modest weight
loss significantly reduced the prevalence of the MetS (OR,
0.62; 95% CI, 0.40–0.95) compared with the control group
(484). A 41% reduction in the incidence of the MetS was also
seen with the intensive lifestyle intervention of the DPP (485).
In addition, a weight loss as small as 5–10% of body weight
can significantly reduce triglycerides and increase HDL-C
(486). Furthermore, both hypertensive individuals and indi-
viduals at risk for developing hypertension can see a signif-
icant reduction in blood pressure with a modest weight loss
(487–489). Fasting blood glucose, insulin, and hemoglobin
A1c can also be decreased with modest weight loss (490);
interestingly, a 7-d negative energy balance without mea-
surable weight loss has also been shown to improve insulin
sensitivity (491). Notably, the DPP demonstrated that weight
loss was the number 1 predictor of reduction in the incidence
of diabetes (492). In fact, for every kilogram of weight loss,

TABLE 8. Therapy of MetS risk factors

Therapeutic target Goals and recommendations

Abdominal obesity 5–10% Weight loss or weight maintenance
Lifestyle modification with diet and increased physical activity

Pharmacological weight loss therapy
Bariatric surgery

Insulin resistance/hyperglycemia Prevention or delay of progression to type 2 diabetes
Lifestyle modification and weight loss as described above
Pharmacotherapy

Treatment of diabetes
Appropriate glycemic control

Metabolic dyslipidemia
Primary target: LDL-C LDL-C lowering as per NCEP:ATPIII goals (see Table 9)
Secondary target: non-HDL-C If TG �200 mg/dl, lower non-HDL-C to �30 mg/dl plus the LDL-C goal
Tertiary target: HDL-C If HDL-C �40 mg/dl in men or �50 mg/dl in women, consider therapy

for HDL-C raising
Elevated blood pressure Goal BP is �140/90 mm Hg (�130/80 mm Hg if diabetes or CKD

present)
Prothrombotic state Consider low-dose aspirin for high-risk patients
Proinflammatory state No specific goals; treat all of the above risk factors

TG, Triglycerides; BP, blood pressure.
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the risk of diabetes development was decreased by 16%. A
decrease in caloric intake is an avenue by which to promote
a chronic negative energy balance resulting in weight loss.
Although the macronutrient classification of the eliminated
calories is of lesser importance when addressing overall en-
ergy balance, the type of macronutrients habitually con-
sumed can influence the health of the individual with MetS.

a. Carbohydrate. Currently, the United States Department of
Agriculture (USDA) and the Institute of Medicine (IOM)
recommend a carbohydrate intake of 45–65% of total caloric
intake (USDA, 2005). This recommendation is appropriate
for most populations because total carbohydrate consump-
tion has not been shown to be associated with the develop-
ment of T2D or the MetS (493–495). Due in part to the recent
rise in the popularity of low-carbohydrate diets, there has
been interest in the effect of carbohydrate intake on serum
lipid levels. Investigations into this question have consis-
tently reported that carbohydrate intake is positively asso-
ciated with total cholesterol, LDL-C, and triglycerides and
negatively associated with HDL-C (496, 497). In addition,
lower carbohydrate diets have been associated with im-
proved carbohydrate metabolism in those with insulin re-
sistance and/or T2D (498). Although weight loss has been
shown to be greater with lower carbohydrate diets in the
short term (499–501), the effects on long-term weight loss
have been mixed (502–505).

Dietary carbohydrate can be placed into two categories:
simple and complex. It is the latter that should comprise the
bulk of the carbohydrate intake, whereas simple carbohy-
drates, especially in the form of added sugars, should be
limited (USDA, 2005). Common sources of added sugars in
the diet include soft drinks, cakes, cookies, pies, fruit drinks,
dairy desserts, and candy (506). Although added sugars are
chemically identical to naturally occurring simple sugars
(e.g., sugars found in fruit), concern is warranted regarding
the lack of nutrients found in foods laden with added sugars.
It has been shown that individuals who consume a greater
percentage of calories as added sugars consume significantly
less vitamins and minerals (507).

The glycemic index has received considerable attention in
terms of classifying which carbohydrates are “good” or
“bad” for disease risk. Low glycemic index foods (i.e., those
that are minimally processed) have been shown to improve
components of the MetS including hyperlipidemia and hy-
perglycemia (508), whereas a higher glycemic index has been
shown to be positively associated with insulin resistance and
MetS prevalence (495). Therefore, a diet high in complex,
unrefined carbohydrates with an emphasis on fiber (14
g/1000 calories consumed daily) and low in added sugars
(�25% of caloric intake) is recommended for individuals
with or at risk for the MetS. This type of diet was recom-
mended for participants in the lifestyle intervention group of
the DPP (i.e., high carbohydrate, low fat); participants de-
creased their percentage fat intake by an average of 6.6% over
a 1-yr period (492). This dietary change contributed to weight
loss, which, as previously noted, was the primary predictor
of the decrease in diabetes incidence in the study. Moreover,
a lower glycemic load was associated with a reduced risk of
CVD in the Nurses’ Health Study (509). Interestingly,

though, diet soda but not “regular” soda was found to be a
predictor of the MetS in the ARIC study (510).

b. Protein. Data regarding appropriate protein intakes for
patients with the MetS are sparse. The ARIC study, however,
recently found that meat intake was associated with MetS
incidence (510). With the exception of patients with nephrop-
athy, a protein intake within the recommendations for the
general population is acceptable: a protein intake of 10–35%
of total caloric intake is recommended by the IOM (http://
health.gov/dietaryguidelines/dga2005/report/HTML/D1_
Tables.htm).

c. Fat. Since NHANES 1971, the average percentage fat
intake in the United States has decreased from 36.9 to 32.8%
in men and from 36.1 to 32.8% in women (511), thus bringing
fat intake within the recommended range of intake (i.e., 20–
35%; USDA/IOM). Despite these reductions, there has been
a marked increase in obesity and the MetS over the same time
period (512). Like carbohydrate, it may be the type of fats that
are consumed, rather than the total amount, that has a greater
effect on components of the MetS. Several studies have
shown no effect of increased fat intake (20 to 40% of caloric
intake) on insulin sensitivity (513–516), although some con-
flicting results have been reported (517). Interestingly, it has
been shown that obese insulin-resistant women lost more
weight on a 16-wk high-fat (40%), low-carbohydrate (40%)
diet, whereas obese insulin-sensitive women lost more
weight on a low-fat (20%), high-carbohydrate diet (60%)
(518). Therefore, the degree of insulin resistance may deter-
mine what macronutrient composition is most appropriate to
promote weight loss.

Evidence points toward the type of fat that is consumed
having an effect on insulin sensitivity. Saturated fat has con-
sistently been shown to be positively associated with fasting
insulin levels (517, 519, 520). The substitution of unsaturated
fats for saturated fats in the diet has been shown either to
have no effect on (521–525) or to improve (109, 526–528)
insulin sensitivity. Given the observed association between
saturated fat intake and insulin levels, it is prudent to rec-
ommend a reduction in saturated fat intake (�7% of caloric
intake) and in increase in the unsaturated fatty acids, spe-
cifically linoleic (5–10% of caloric intake) and �-linolenic
(0.7–1.6% of caloric intake), as is promoted by the 2005 USDA
Dietary Guidelines. These guidelines are also applicable in
the case of CVD because investigators began researching this
relationship as early as the 1960s. Both serum cholesterol and
overall CVD risk have been shown to be improved by type
of dietary fat, i.e., a reduction in saturated fat and an increase
in unsaturated fat, more so than total fat intake (529–532).
The Nurses’ Health Study investigators reported that a 5%
increase in saturated fat intake was associated with a 17%
increase in coronary risk, whereas monounsaturated and
polyunsaturated fat intakes were inversely related to coro-
nary disease (533).

d. Sodium. In addition to the effects of diet on weight loss,
other “diet-related” lifestyle modifications can have a sig-
nificant impact on blood pressure regulation (534). A clear
positive association has been shown between sodium intake
and blood pressure, with excessive sodium intake associated
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with hypertension (535, 536). In addition, sodium restriction
has been shown to be an important strategy in the prevention
and treatment of hypertension (536–539). The Dietary Ap-
proaches to Stop Hypertension (DASH) diet showed that
lower sodium intake reduced blood pressure in patients with
high-normal blood pressure and mild hypertension (539).
Furthermore, sodium restriction has also been associated
with reduced CVD events (540) and congestive heart failure
(541). Guidelines therefore recommend that daily sodium
intake should be restricted to no more than 65–100 mmol
(534, 542). In addition to sodium restriction, increased po-
tassium intake has also been shown to improve blood pres-
sure, especially in the setting of high sodium intake (543).
Guidelines have recommended the intake of foods enriched
with potassium, such as fruit and vegetables, with a goal of
90–120 mmol of potassium per day (534, 544).

In summary, dietary intake clearly has an impact on all of
the components of the MetS. Although each case should be
treated individually, it is prudent to recommend a diet low
in saturated fat, higher in unsaturated fats, high in complex
carbohydrates, and low in sodium.

2. Physical activity. A lifestyle intervention designed to in-
crease physical activity and decrease, or possibly maintain,
body weight is another important approach for global CVD
risk modification. Higher cardiorespiratory fitness (i.e., aer-
obic capacity) and increased self-reported physical activity
have been shown to be inversely related to CVD mortality
and to incidence of IGT and T2D (545–547). Although it is
difficult to separate out the effect of exercise, independent of
weight loss, increased physical activity appears to reduce
CVD risk and incidence of T2D (546, 548–550). Thus, it
should not be surprising that physical activity has been
shown to predict incidence of MetS in a dose-dependent
manner; lower levels of activity increased incidence of MetS
and higher levels of physical activity protected against the
development of MetS (551, 552). Furthermore, the odds of
having the MetS were almost doubled in adults reporting no
moderate or vigorous physical activity compared with those
reporting engaging in at least 150 min/wk (553). Higher
cardiorespiratory fitness also predicted lower incidence of
MetS in middle-aged women and men followed for an av-
erage of 5.7 yr (554). Physical activity and cardiorespiratory
fitness likely protect against development of the MetS
through their effects on each of the individual components.
Exercise is particularly effective at reducing insulin resis-
tance and has also been shown to improve dyslipidemia and
hypertension, albeit to varying degrees. Whether or not
physical activity is accompanied by a change in body weight
(particularly abdominal adiposity) is an important mediator
in its ability to modify each of the components.

a. Aerobic exercise and abdominal adiposity. When negative
energy balance (i.e., caloric deficit) and weight loss are the
same between groups of individuals undergoing dietary re-
striction, either with or without exercise, fat mass (whole-
body and abdominal) is reduced to the same extent (555).
However, even in the absence of weight loss, exercise has
been shown to reduce visceral adipose tissue (556–558). A
recent systematic review of the literature supports a dose-
response effect of aerobic exercise volume on visceral adi-

posity, but the ability of exercise to reduce visceral adipose
tissue was less robust in those with metabolic disorders (e.g.,
T2D, dyslipidemia) (559). Thus, it remains unclear whether
a dose-response of exercise on central adiposity holds true in
MetS. Nevertheless, during weight maintenance (i.e., energy
balance), regular exercise appears to play an important role
in abdominal fat loss (556–558) and prevention of weight
regain in those who have successfully lost weight (560, 561).

b. Aerobic exercise and insulin resistance. Insulin resistance
has generally been considered to be an important underlying
pathology of the MetS. Although there are no definitive
criteria for categorizing an individual as insulin resistant or
insulin sensitive, the majority (�78%) of people who have the
MetS are relatively more insulin resistant (i.e., upper tertile
of steady-state plasma glucose during insulin suppression)
(562). Exercise improves glucose homeostasis by enhancing
glucose transport and insulin action in working skeletal mus-
cle. Not only does muscle contraction stimulate uptake of
glucose through non-insulin-dependent mechanisms during
exercise, but sensitivity to insulin-mediated glucose uptake
is greatly improved immediately after exercise (563, 564).
Although a single bout of aerobic exercise will normally not
acutely improve glucose tolerance in an insulin-resistant in-
dividual with T2DM, glucose uptake during exercise is in-
creased, and glucose and insulin response to a meal imme-
diately after exercise is improved (565). However, in obese
and T2D individuals, this acute effect of exercise on insulin-
stimulated glucose uptake does not appear to persist beyond
24 h after the last bout of exercise (566). Additionally, re-
peated bouts of exercise that are accompanied by improve-
ments in cardiorespiratory fitness (i.e., aerobic exercise train-
ing), but no change in body weight, do not appear to improve
insulin-mediated glucose uptake beyond the effect of the last
bout of exercise (567). Thus, for continued benefit of exercise
on insulin action, an individual would need to follow the
AHA and American College of Sports Medicine recommen-
dation to exercise at least 30 min/d most days of the week
(568). There is evidence to suggest that aerobic exercise train-
ing may need to be accompanied by weight loss for a per-
sistent effect on glucose tolerance and insulin action beyond
the immediate postexercise effects (569, 570).

c. Aerobic exercise and dyslipidemia. Current NCEP:ATPIII
recommendations maintain LDL-C reduction as the primary
treatment goal for CVD risk reduction, but also recommend
that therapeutic lifestyle changes (e.g., physical activity,
weight management) be implemented in those individuals
with the MetS with the aim of treating elevated triglycerides
and low HDL-C (571). Although aerobic exercise training has
generally been shown to increase HDL-C and to decrease
triglycerides, results are mixed particularly for an effect on
LDL-C (572–576). The variable results of previous studies are
impacted by the characteristics of the cohort being studied,
including: baseline lipid/lipoprotein profile, degree of over-
weight/obesity (and changes in body composition over
time), age, sex, and disease (e.g., T2D). Nevertheless, bene-
ficial effects of exercise training on lipids and lipoproteins are
routinely observed and may have additional impact when
combined with dietary modification and weight loss (577).
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Furthermore, exercise has an acute effect on postprandial
triglyceride excursions, possibly providing additional anti-
atherogenic protection (578).

d. Aerobic exercise and hypertension. A recent meta-analyses
of randomized, controlled trials studying the effect of aerobic
exercise on blood pressure suggests that exercise reduces
systolic and diastolic blood pressure by approximately 3.8
and 2.6 mm Hg, respectively (579). Although the effect of
aerobic exercise on blood pressure is small, and not routinely
observed in all studies, there may be added benefit when
combined with dietary modification (i.e., DASH diet) and/or
weight loss (580).

e. Resistance exercise and the metabolic syndrome. As with
cardiorespiratory fitness, greater muscle strength has been
associated with decreased risk of developing MetS in men,
suggesting that there may be a role for resistance training in
the prevention of MetS (581). This association between re-
sistance training and the MetS, however, is attenuated after
adjusting for cardiorespiratory fitness (581), emphasizing the
interrelatedness of the two functional measures. Neverthe-
less, resistance exercise has been shown to improve many of
the individual components of MetS. Although resistance
training has little effect on lipids, it can improve glycemic
control and insulin sensitivity (582, 583) and may reduce
blood pressure (584). Furthermore, resistance training may
indirectly affect metabolic improvements through reduc-
tions in abdominal fat (582, 583). Prospective lifestyle inter-
ventions designed to evaluate the combined effects of resis-
tance and aerobic exercise on MetS will add important
information to this area (585).

B. Pharmaceutical therapy

1. Excess adiposity. Central adiposity is a core component of
the MetS and may be one of the key elements in the patho-
physiology responsible for the development of the MetS and
its components. It therefore seems logical to target weight
loss aggressively. As discussed above, lifestyle interventions
resulting in modest weight loss can result in significant clin-
ical benefits. Lifestyle modification, however, is too often met
with failure and frustration. The National Institutes of Health
guidelines for the treatment of obesity recommend consid-
eration of pharmaceutical therapy for weight loss for indi-
viduals with a BMI of at least 30 kg/m2 or for those with a
BMI of at least 27 kg/m2 and comorbidities associated with
their excess weight. The majority of patients who meet the
criteria for the MetS will therefore meet the criteria for con-
sidering pharmaceutical weight loss therapy.

It is beyond the scope of this paper to review pharmaco-
therapy for weight loss, and this topic has been reviewed
elsewhere recently (586–589). Currently, only sibutramine
and orlistat are Food and Drug Administration approved for
long-term use. Studies have shown that pharmacological
therapy for weight loss results in improvements in the in-
dividual components of the MetS (586). In addition, a 4-yr
randomized controlled study of orlistat showed a significant
reduction in the progression to diabetes in high-risk indi-
viduals (590). The long-term benefits of these agents in re-
ducing CV risk in those with the MetS, however, have not yet

been clearly established. Nevertheless, these agents should
be considered as a potential valid treatment option.

2. Insulin resistance/hyperglycemia. Insulin resistance is an-
other core component of the MetS that potentially deserves
specific attention when discussing pharmacotherapy. As dis-
cussed above, weight loss and lifestyle modification inde-
pendent of weight loss can lead to clinically meaningful
improvements in insulin sensitivity and should be consid-
ered the primary therapeutic options for treating insulin
resistance. The difficulties and frustrations associated with
weight loss efforts and lifestyle modification have driven the
demand for using pharmaceutical agents that target insulin
resistance more directly. The exact role of using these agents,
however, is less clear. There are now several randomized,
controlled trials showing that agents that target insulin re-
sistance can help prevent the progression to T2D in individ-
uals with IGT. It must be remembered, however, that these
studies have not directly targeted individuals with the MetS.
It is unclear whether these agents truly prevent the progres-
sion to T2D or simply treat glucose intolerance or mild hy-
perglycemia. In addition, it is unclear from these studies
whether these agents improve CVD outcomes. Therefore, as
with weight loss medications, the goals for the use of agents
targeting insulin resistance must be kept clear.

Metformin, which has a primary mechanism of action of
reducing hepatic glucose production, has been shown to
reduce the progression of diabetes from IGT by approxi-
mately 31% in the DPP, of which 53% had the MetS (591).
Incidence of the MetS was also reduced by 17% in the
metformin-treated group of the DPP, which was driven pri-
marily by improvements in WC and fasting glucose (485).
Other cardiac risk factors, however, did not improve with
metformin to the same degree as with the intensive lifestyle
intervention (592). Long-term follow-up would suggest that
metformin is in fact treating IGT and not necessarily “pre-
venting” progression to T2D (593). From a safety perspective,
though, no concerns emerged with 5 yr of follow-up. Now
that metformin is available in generic form, the cost may not
be prohibitive although no formal cost effectiveness studies
have been performed. Despite the potential attractiveness of
this agent for patients with the MetS, there are still many
unresolved issues. What dose should be used? How long
should this therapy last: indefinitely? Does metformin re-
duce the risk for CVD outcomes? The United Kingdom Di-
abetes Prospective Study (UKPDS) and its 10-yr follow-up
report suggests the answer is “yes,” but this outcome was
measured in patients with T2D, not the MetS (594, 595).

Thiazolidinediones have been shown to improve insulin
sensitivity. There are now several studies showing their po-
tential for “preventing” T2D in high-risk individuals (596–
598). Of note, the TRIPOD study showed that troglitazone
could slow the progression to T2D in high-risk women with
recent history of GDM (597). There appeared to be a lasting
effect of troglitazone on slowing diabetes progression even
when the agent was discontinued. More recently, the
DREAM study showed that rosiglitazone also slowed the
progression to T2D in patients with IGT by about 60% (598).
Again, these studies were not performed in patients with the
MetS specifically, and more recently there has been concern
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regarding potential increased risk in CVD outcomes, es-
pecially with rosiglitazone (599 – 601). Although thiazo-
lidinediones increase body weight, they are associated with
a reduction in waist-to-hip ratio and improvements in other
components of the MetS, including blood pressure, triglyc-
erides, HDL-C, and liver-related transaminases (598).

In the STOP-NIDDM trial, acarbose, a drug that affects
carbohydrate absorption and is approved for the treatment
of T2D, was also shown to reduce the progression to T2D in
individuals with IGT (602). This trial also showed that acar-
bose treatment was in fact associated with reduced CVD and
hypertension (603). The main limitation of the use of this
agent is its poor patient tolerability.

3. Dyslipidemia. The “metabolic” dyslipidemia is character-
ized by elevated concentrations of triglycerides, low levels of
HDL-C, and small, dense LDL-C particles. Dyslipidemia,
especially elevated LDL-C, is a major modifiable risk factor
for CVD, and proper management has been shown to sig-
nificantly reduce CVD events and deaths (604). This has
prompted the guidelines to recommend reaching appropri-
ate LDL-C concentrations as the primary goal. Although it is
necessary to state the importance of implementing thera-
peutic lifestyle changes in patients with the MetS (e.g., in-
creased physical activity and decreased saturated fat and
cholesterol intake), a portion of MetS patients will require
drug therapy to achieve lipid goals.

a. Treatment goals. The NCEP:ATPIII guidelines have iden-
tified elevated LDL-C as the primary target of cholesterol-
lowering therapy, after which other components of dyslip-
idemia should be addressed (1). The LDL-C goal is
dependent upon a person’s absolute risk for CHD, meaning
the higher the risk, the lower the goal as outlined in Table 9.
The majority of MetS patients will be of moderately high to
high risk. The guidelines recommend that LDL-C goals
should be set at less than 130 mg/dl with the option of
targeting less than 100 mg/dl in moderately high-risk indi-
viduals. Target goals should be set at an LDL-C less than 100
mg/dl in high-risk patients with the option of aiming for less
than 70 mg/dl in the “very high-risk” patient (605). The
NCEP:ATPIII guidelines recommend setting a secondary
lipid goal for non-HDL-C. Specifically, for individuals with

triglycerides of at least 200 mg/dl, after achieving LDL-C
goals, the goal should be to decrease non-HDL-C (LDL-C �
VLDL-C). The goal for the non-HDL-C is 30 mg/dl greater
than LDL-C (1). A primary lipid target to reach this goal will
be either further LDL-C lowering or triglyceride lowering.
Perhaps another secondary goal should reflect atherogenic
particle number instead. Atherogenic particle number can be
estimated by non-HDL-C (recommended by the NCEP:AT-
PIII as discussed above), LDL particle number, or apo B. It
is beyond the scope of this review to discuss the relative
merits of each of these biomarkers as targets for lipid man-
agement in the MetS. A tertiary lipid goal should be for
HDL-C. Although the NCEP:ATPIII guidelines classify low
HDL-C as less than 40 mg/dl in both men and women, there
is no specific target goal for HDL-C because there is insuf-
ficient evidence to specify a therapy goal. Similarly, because
the guidelines classify hypertriglyceridemia as triglyceride
concentrations of at least 150 mg/dl, no specific triglyceride
goals have been set.

b. Statins. Because LDL-C lowering is the primary treat-
ment goal of the metabolic dyslipidemia, the use of LDL-C-
lowering agents such as the 3-hydroxy-3-methyl glutaryl
coenzyme A (HMG-CoA) reductase inhibitors or statins has
become the standard first-line therapy. Due to their minimal
drug-drug interactions and side effects, statins are consid-
ered to be the most effective class of drugs for reducing
LDL-C concentrations (604). Depending on the dose and the
specific type of statin used, LDL-C reductions of 15 to 60
mg/dl are observed (606). Statins increase HDL-C by 5–10%,
with greater increases seen in individuals with lower HDL-C
and elevated triglycerides (607–609), and reduce triglyceride
concentrations by 7–30% primarily with moderate to high
doses (607–609). Non-lipid-lowering or pleiotropic effects of
statins have also been implicated in their beneficial effects on
inflammation, endothelial function, and CVD events (610,
611). Statins are highly effective in decreasing CVD mortality
and morbidity, but despite the number of primary and sec-
ondary prevention trials showing benefits in reducing CVD
outcomes with statin therapy, there are no published trials to
date that have specifically targeted patients with the MetS.
The study that most resembles a primary prevention trial of

TABLE 9. Goals for LDL-C lowering (605)

Risk category LDL-C goals Recommendations

Lower risk �160 mg/dl Lifestyle modification
0–1 Major risk factor Consider pharmacotherapy if LDL-C

�190 mg/dl after lifestyle modification
10-yr risk �10%

Moderate risk �130 mg/dl Lifestyle modification
�2 major risk factors Consider pharmacotherapy if LDL-C

�160 mg/dl after lifestyle modification
10-yr risk �10%

Moderately high risk �130 mg/dl Lifestyle modification
�2 Major risk factors Optional �100 mg/dl Consider pharmacotherapy if LDL-C

�130 mg/dl or optionally �100 mg/dl
after lifestyle modification

10-yr risk 10–20%
High risk �100 mg/dl Lifestyle modification

CHD or CHD risk
equivalents

Optional �70 mg/dl Consider pharmacotherapy if LDL-C
�100 mg/dl or optionally �70 mg/dl
after lifestyle modification
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CVD in patients with the MetS is the Anglo-Scandinavian
Cardiac Outcomes Trial–Lipid Lowering Arm trial (612). In
this study, individuals with hypertension and at least one
other CVD risk factor were randomized to atorvastatin or
placebo. Regardless of their baseline lipids, the treatment
arm showed a significant reduction in CVD events. Post hoc
analysis of the Treating to New Targets study found that
intensive lowering of LDL-C in patients with both CHD and
the MetS was associated with a reduction in major CVD
events (613). Thus, at present the evidence strongly supports
attention directed toward lowering LDL-C before addressing
the lipid components of the MetS (614).

c. Other LDL-C lowering agents. Bile acid sequestrants (BAS)
and cholesterol absorption inhibitors (CAI) lower LDL-C by
decreasing absorption of intestinal bile acids and cholesterol,
respectively. BAS result in 15 to 30% reductions in LDL-C
(615). The only clinically available CAI, ezetimibe, has been
shown to result in 15–25% reductions in LDL-C (616). Al-
though BAS and CAI are both effective as monotherapy,
greater benefits are obtained when used in combination with
statins, an effect that may be due to their complementary
mechanisms of action (617–619). BAS have been shown to
reduce the risk for major coronary events (620), whereas
ezetimibe has only been shown to reduce potential cardiac
risk in patients with the MetS (620, 621). The recent Ezetimibe
and Simvastatin in Hypercholesterolemia Enhances Athero-
sclerosis Regression (ENHANCE) study, although not an
outcome study, demonstrated no effect of ezetimibe on ca-
rotid intima media thickness in patients with familial hy-
percholesterolemia despite a 17% lower level of LDL-C (622).

d. Fibrates. Fibrates are an effective therapy for reducing
serum triglyceride concentrations and therefore non-HDL-C.
Fibrates decrease triglycerides by 25–50%, with greater re-
ductions in individuals that are hypertriglyceridemic (623).
Fibrates also increase HDL-C by 5–15% and reduce LDL-C by
0–30%, although LDL-C may be increased in patients with
low HDL-C and elevated triglycerides (604). The decrease in
triglycerides may transform small, dense LDL-C into more
normal-sized LDL-C (624). The Helsinki Heart Study, a pri-
mary prevention study, found that fibrate therapy with gem-
fibrozil significantly reduced the incidence of CVD (625, 626),
but this was not specifically in patients with the MetS. The
Veterans Affairs High-Density Lipoprotein Intervention
Trial (VA-HIT), a secondary prevention study, also showed
that gemfibrozil significantly reduced CVD, especially in
obese individuals with diabetes (627). Other clinical fibrate
trials, such as the Bezafibrate Infarction Prevention (BIP) and
the Fenofibrate Intervention and Event Lowering in Diabetes
(FIELD) studies, however, have found less favorable effects
(628, 629); therefore the evidence for cardioprotection is not
as robust as it is for statins. Combination therapy of fibrates
plus statins in high-risk individuals attains the target for
non-HDL-C better than statins alone. However, no clinical
trials to date have compared statins against the combination
of statins plus fibrates on CHD outcomes (604, 629). The
potential benefits of combining these agents must be
weighed against the increased risk of myopathy (630). Post
hoc analyses of some of these fibrate studies, however, sug-

gest that individuals with the MetS may derive greater ben-
efits than those without the MetS (631).

e. Niacin. Niacin has favorable effects on essentially all of
the abnormalities of the metabolic dyslipidemia. It is con-
sidered the most effective agent for raising HDL-C (15 to
35%) and increasing HDL particle size (632). Niacin signif-
icantly lowers triglycerides (20 to 50%) and LDL-C (5–25%)
(604). Niacin also causes beneficial changes in lipoprotein
subclasses because it has been shown to reduce the propor-
tion of small, dense LDL particles while increasing large,
more buoyant LDL particles and larger HDL particles (633–
635). Combination therapy of niacin and a statin produces
greater effects on lipid levels than does either agent given
alone (636). The primary limitations for the use of niacin
include flushing (most often associated with immediate-re-
lease niacin) and hyperglycemia (637–640).

f. Omega-3 fatty acids. Supplementation with marine ome-
ga-3 PUFAs may be indicated in MetS patients presenting
with combined dyslipidemia. Two to 4 g of omega-3 PUFAs
per day have been shown to reduce fasting and postprandial
serum triglycerides by 20 to 40%, an effect that is most pro-
found in individuals with elevated levels of triglycerides
(641–643). The long-chain PUFAs, eicosapentaenoic acid and
docosahexaenoic acid, appear to be equally effective in re-
ducing serum triglyceride concentrations (644). Omega-3
PUFAs have little or no effect on HDL-C (645, 646) but can
lead to 5–10% elevations in LDL-C levels (647). Studies ex-
amining the use of statins and omega-3 PUFA in treating
combined dyslipidemia have found significant reductions in
serum triglycerides without adverse affects on LDL-C (648,
649). In the JELIS study, the addition of eicosapentaenoic acid
to a statin therapy significantly decreased the incidence of
primary end points of major coronary events (e.g., sudden
cardiac death and fatal or nonfatal myocardial infarction)
(650). Additional benefits of high-dose omega-3 PUFAs for
patients with the MetS are improvements in inflammatory
state (651), decreased platelet aggregation (652), reductions
in blood pressure (653), enhanced endothelial function (654),
and potential antiarrhythmic effects (655). Despite these ben-
efits, the NCEP:ATPIII guidelines recommend that more de-
finitive clinical trials are necessary before recommending
high intakes of omega-3 PUFAs (1).

4. Elevated blood pressure/hypertension. Management of ele-
vated blood pressure and hypertension is another key target
in CVD risk reduction in the MetS patient, although there are
no clear guidelines for blood pressure management specific
to this population. The Seventh Report of the Joint National
Committee on Prevention, Detection, Evaluation, and Treat-
ment of High Blood Pressure has recommended that the
target blood pressure should be less than 140/90 mm Hg in
those without diabetes or chronic kidney disease (CKD) and
less than 130/80 mm Hg for those with diabetes or CKD
(656). As with management of dyslipidemia, the primary
therapeutic intervention for blood pressure management
should be lifestyle modification, as discussed above, but
many patients will require pharmacological therapy to reach
blood pressure goals. It has been proposed that angiotensin-
converting enzyme (ACE) inhibitors or angiotensin receptor
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blockers should be the first-line classes of agents in the MetS,
especially in the setting of diabetes or CKD (657, 658). Cer-
tainly these classes of agents have been shown to be effective
in reducing the incidence of albuminuria or progression of
nephropathy in patients with diabetes (659). Although a
number of trials have shown that ACE inhibitors and an-
giotensin receptor blockers may reduce the risk for diabetes
(660), a more recent study designed to examine this issue
directly found that the ACE inhibitor ramipril did not pre-
vent the progression of diabetes in persons with IFG or IGT
(661). The Antihypertensive and Lipid-Lowering Treatment
to Prevent Heart Attack Trial (ALLHAT) showed that treat-
ment with a thiazide-type diuretic in patients with the MetS
results in superior CVD outcomes compared with treatment
with calcium channel blockers, �-blockers, or ACE inhibitors
despite the less favorable metabolic profile associated with
thiazide diuretics (662, 663). The ALLHAT and the UKPDS
have shown that agents such as thiazide diuretics and beta-
blockers lower the risk for CVD events even in patients with
diabetes (664, 665). These agents, however, have also been
associated with increased risk for diabetes (663, 664). Cer-
tainly the majority of patients who need antihypertensive
therapy will likely need more than one agent for proper
blood pressure control (542).

5. Prothrombotic state. The MetS is associated with elevated
levels of coagulation factors such as fibrinogen and PAI-1
(666). Although low-dose aspirin is frequently recom-
mended to patients with MetS (667, 668), there are no specific
studies of the use of aspirin or other antiplatelet agents for
the primary prevention of CVD in individuals with the MetS
specifically. Long-term use of aspirin therapy has been
advocated in the secondary prevention of CVD (669), and
some have recommended aspirin in high-risk patients
with the MetS, especially those with CVD (670). Until there
are more data, however, the use of aspirin in the primary
prevention of CVD should remain as an “individual clin-
ical judgment” (669).

6. Proinflammatory state. The MetS is associated with elevated
markers of inflammation. Elevated levels of CRP, a systemic
marker of inflammation, have been shown to be associated
with greater risk for CVD in patients with MetS (209). There
are, however, no currently recommended direct therapies
targeting inflammation. Lifestyle modification and weight
loss result in reduced CRP concentrations (671, 672), as does
the treatment of the other associated comorbidities such as
dyslipidemia, elevated blood pressure, and insulin resis-
tance/hyperglycemia (673, 674).

C. Bariatric surgery

Perhaps the most promising treatment of multiple risk
factors within the MetS in the context of severe obesity lies
in bariatric surgery. The data supporting the safety and ef-
ficacy of bariatric surgery have been reviewed previously
(675). Titles in the literature reflect optimism about its role in
resolving many health risk factors and in attenuating at least
a portion of the epidemics of obesity, diabetes (676, 677), and
perhaps the MetS (678). Bariatric surgery has been found to
be associated with the improvement and resolution of mul-

tiple comorbidities associated with obesity, including hy-
pertension, T2D, NAFLD, OSA, cardiopulmonary failure,
CVD, arthritis, PCOS, dyslipidemia (exclusive of hypercho-
lesterolemia), hyperuricemia, and infertility (676, 679–688).
The seminal study of Pories et al. (676) highlighted the res-
olution of aberrances in glucose metabolism (IGT, T2D) over
a 14-yr follow-up period. This observation was substantiated
in the Swedish Obese Subjects study in which a decrease in
the incidence of T2D was seen at 2 yr (including a reversal
of previously diagnosed diabetes and prevention of new
onset diabetes). In an extension of the study of Pories and
colleagues, the reduction in incidence of T2D was from 31.8
to 8.6%, whereas the incidence increased from 56.4 to 87.5%
in the control group (689). In a recent meta-analysis of 22,094
morbidly obese patients who underwent bariatric surgery,
T2D resolved in 76.8% of cases and improved in 86.0% of
cases (680). In a more recent study, patients with T2D ran-
domized to laparoscopic adjustable gastric banding had a
greater than 5-fold increase in “remission” of their diabetes
as compared with conventional diabetes therapy (690). More
specifically to the MetS, improvements in the metabolic pro-
file have also been documented as an effect of the surgery
(677, 682, 691, 692), presumably due to the redistribution of
adiposity (693). Most recently, 10-yr follow-up data from the
Swedish Obese Subjects study (n � 4047 severely obese sub-
jects) showed an overall reduction in mortality in patients
who had the surgery compared with the control group (694).
And in a recent retrospective cohort study (n � 7925), mor-
tality in the surgery group was reduced by 40% over 7.1 yr,
particularly from deaths due to CVD, diabetes, and cancer
(695). Thus, bariatric surgery appears to be beneficial on
many levels in treating numerous risk factors of the MetS in
severely obese people who qualify for the surgery, and it
should be considered as a valid treatment option for the MetS
patient.

VIII. Unanswered Questions

Despite the great interest in the MetS, many unanswered
questions remain. There has been much debate and contro-
versy over whether there is a unifying pathogenesis of the
MetS. Although abdominal adiposity and insulin resistance
appear to be at the core of the development of the MetS, it
is still not clear whether all of the components are directly
related to these conditions. How should the MetS best be
defined is another important question that deserves consid-
erable attention. As is evident from the number of different
definitions proposed by different groups (NCEP:ATPIII,
WHO, IDF, AACE, etc.), there is not a consensus on how best
to define the MetS. This issue is important to resolve for a
number of different reasons. Without a consensus definition,
it is difficult to perform research on the MetS, and this creates
confusion for the clinicians. Should a marker for the pro-
thrombotic state or inflammation be added? In addition,
whatever the components, should they all be considered
equal in their importance or risk prediction? This is reflected
by some definitions requiring some, but not all, components
to be present. In addition, whether the MetS should reflect
more of a continuum of risk as opposed to a “present” or
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“absent” situation has also been debated (696). In fact, it is
unclear whether these cutpoints should be based on biolog-
ical or statistical endpoints. How many of the factors should
actually be present to make the diagnosis also needs better
scientific rationale. How should the MetS best be treated?
Beyond favorable lifestyle modification, most would agree
that treating each of the individual components of the MetS
is important. It is less clear, however, what the goals of
treatment for the individual components should be for pa-
tients with the MetS. For example, should lipid or blood
pressure goals be treated more aggressively than IGT in those
with the MetS? It is also unclear whether targeting a more
unifying pathophysiological process such as abdominal ad-
iposity or insulin resistance should be recommended at this
time.

IX. Summary and Conclusions

The MetS is a clustering of components or risk factors
associated with an increased risk for CVD and T2D. A con-
sensus definition of the MetS has been difficult to develop,
but it is an important consideration for the groups involved
and continues to be a “work in progress.” Although the
prevalence of the MetS depends on the definition used and
population studied, it has clearly been increasing globally.
The MetS is not exclusive to adults. In fact, the prevalence of
the MetS in younger populations is increasing in parallel
with childhood obesity. This will likely be associated with
increased risk for CVD and T2D in adulthood. Most studies
show that the MetS is associated with an approximate dou-
bling of CVD risk and that the risk for incident T2D is more
than five times higher in individuals with the MetS compared
with those without the syndrome. In addition, the MetS is
associated with a number of other comorbidities such as
NAFLD, sleep disorders, reproductive tract disorders, and
microvascular disease.

Specific guidelines for the treatment of the MetS and/or its
components have not yet been established. In addition, be-
cause it is unclear whether there is a unifying pathophysi-
ological mechanism resulting in the MetS, it is unclear
whether the MetS can be treated in and of itself. It is our
opinion that lifestyle modification and weight loss should be
at the core of treating or preventing the MetS and its com-
ponents. It is well established that weight loss with diet and
physical activity is beneficial for treating all of the compo-
nents of the MetS, including excessive adiposity, dyslipide-
mia, hypertension, insulin resistance, and hyperglycemia. In
addition, there is some consensus on treating the individual
components of the MetS with the overall goals of reducing
the risk for or preventing CVD and T2D. Nevertheless, con-
centrating therapeutic efforts on treating the excess adiposity
and insulin resistance associated with the MetS may provide
the most overall success in attaining these goals. In addition,
pharmacotherapy and surgery for weight loss also have an
important role. Pharmacotherapy targeting a number of the
components of the MetS, in addition to aggressive manage-
ment of LDL-C and therapy for the prothrombotic state, has
also been generally accepted as appropriate management of
these high-risk patients. There is more controversy over

pharmacotherapy targeting insulin resistance and hypergly-
cemia. Finally, a number of unanswered questions regarding
the MetS remain, including questions regarding the defini-
tion, pathogenesis, and treatment of the MetS.
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