2.- Power

- The probability of rejecting H_0 when H_0 is false and H_1 is true.
- Effect: Any difference between a true and a hypothesized population mean

- The power of a statistical test is given by $1 - \beta$
- The power of the test determines the probability of detecting a particular effect

II. Inferential Statistics (6)

- Estimation
- Confidence Intervals

1.- Estimation

- Statistical Estimation
 - A form of Inferential Statistics which consists in estimating a parameter of a population from a corresponding sample statistic
- Two forms:
 - Point estimate
 - Confidence interval (CI)

Estimation

- Point estimate
 - Estimating the value of a parameter as a single point from the value of the statistic
 - Example: the observed sample mean as the point estimate of the mean of a population (μ)
- Confidence Interval
 - Is a range of values that, with a known degree of certainty, includes the population parameter
2.- Confidence Intervals

- A range of values that, with a known degree of certainty, includes an unknown population characteristic (e.g., a population mean μ)
- Level of confidence:
 - The percent of time a series of confidence intervals includes the unknown population characteristic (e.g., population mean)

Confidence Intervals (CI)

Why CIs work?

- They are built on three important properties of the sampling distribution of the mean
- The mean of the sampling distribution equals the unknown population mean
- The definition (and meaning) of the standard error of the mean
- The shape of the sampling distribution approximates a normal distribution

Confidence Intervals

- True Confidence Intervals
- False Confidence Intervals

In interval estimation, as the width of the interval decreases, statistical precision increases

- The width of the interval can be decreased by increasing the sample size
- As the level of confidence increases (e.g., from .95 to .99) the width of the interval also increases if other conditions are kept constant (e.g., same sample size)

Confidence Intervals (CI)

- CI for μ (based on z)
 Sample Mean $\pm (z_{conf})(\text{Standard error of the Mean})$

Example (Radioactive Score in Fresno, TECδ7), with a 95% level of confidence:
With $n = 100$, $104 \pm (1.96)(15/\sqrt{100}) = 101.06$; 106.94
With $n = 25$, $104 \pm (1.96)(15/\sqrt{25}) = 98.12$; 109.88
Confidence Intervals

- CI for μ based on z:
 - Assumptions
 - Population standard deviation σ is known
 - Population is normal (or that the sample size is large enough to satisfy the requirements of the central limit theorem)

Hypothesis Tests or CIs?

- Hypothesis tests indicate whether or not an effect is present
- CIs indicate the possible size of the effect

II. Inferential Statistics (7)

- t test for One Sample
- t sampling distribution
- Example

1.- t test for One Sample

- The t test is used (rather than z test) when:
 - The population standard deviation σ is unknown
 - σ must be estimated with the sample standard deviation s (for inferential statistics)
 - The standard error of the mean σ_x must be estimated with the estimated standard error of the mean $s_{\bar{x}}$

- $s = \sqrt{\frac{\sum (X - \bar{X})^2}{n-1}}$

- The standard error of the mean σ_x must be estimated with the estimated standard error of the mean $s_{\bar{x}}$
 - $s_{\bar{x}} = \frac{s}{\sqrt{n}}$

t test for One Sample

- σ must be estimated with the sample standard deviation s
- $s = \sqrt{\frac{\sum (X - \bar{X})^2}{n-1}}$
- This version of the sample standard deviation is used for inferential statistics
- The standard error of the mean σ_x must be estimated with the estimated standard error of the mean $s_{\bar{x}}$
 - $s_{\bar{x}} = \frac{s}{\sqrt{n}}$