Week 2

Terry Sejnowski – A Critique of Pure Vision

- Upon review of literature it was realized that the current view of vision did not agree with the facts

- **Levels of investigation**
 - CNS > Systems > Maps > Networks > Neurons > Synapses > Molecules
 - In vision system, an image of the visual world is preserved on the retina, then on the cortex
 - **Signal Neurons**: fire for small patch of visual world (receptive field)
 - Receptive fields
 - Circular
 - in foveal region cells receive info from < 1 degree of visual field
 - Fovea moves according to area of fixation

- Hubel and Wiesel:
 - Recorded in V1 w/ individual neurons
 - Plotted receptive region
 - Cells have preferred orientation
 - Range of receptive field in cortex elongated
 - Firing rate of neurons dependent on orientation, color, motion, and depth
 - Cells are feature detectors

- In visual cortex information flow hierarchically
- **Grandmother Cell Theory**

- Early Goal of Vision Research
 - Create internal model of entire visual world and its properties – to accomplish any visual task

- Problems:
 - **Change Blindness**: people can miss obvious changes to field of vision
 - **Active Visions**
 - eyes saccade approx. every 100 ms
 - spend more time on hair, lips
 - **Top-down Processing**:
 - Eye movements vary based on information sought by viewer
 - Attention modulates firing for given stimulus
 - Visual spike also depends on expected reward
o **Temporal Difference Learning**

Seana Coulson – Lateralization of Function

- **Brain Anatomy**
 - Brain seen as extension of spinal chord
 - **Corpus Collosum**: connects left and right hemisphere
 - **Cerebellum**: coordinating muscle movements and sense
 - **Brain Stem**: regulates basic fn’s (heart rate, breathing, digestion)

- **Cerebral Cortex**
 - Two millimeters thick, area of 1.5 square meters
 - Can be separated into **frontal lobe**, **parietal lobe**, **temporal lobe**, and **occipital lobe**
 - **Central sulcus** and **silvian sulcus** divides parts of cortex
 - Frontal lobe (in front of central sulcus)
 - Important in decision making/judgement
 - Parietal lobe (behind central sulcus, above parietal lobe)
 - Touch, pressure temperature and pain
 - Temporal lobe (above auditor fissure)
 - Perception, Recognition, Auditory processing
 - Occipital Lobe (rear of brain)
 - Vision

- **Lateralization of Function**: one side of brain more crucial for given function/computational task (motor cortex, somatosensory cortex, language areas, etc.)
 - **Strong**: if one side of brain is damaged, very strong deficit results
 - **Weak**: if one side of brain is damaged, some initial deficit, but opposite side is able to compensate

- **Somatosensory** map
 - Area of the brain that responds to specific area of body sensation
 - Not proportional – huge amount of space use for mouth, lips, and hands

- **Language**:
 - **Wada test**: used to lateralize language
 - Most have left hemisphere dominant speech
 - Left-handed more likely to have bilateral speech areas or right hemisphere dominant
 - Brain damage studies responsible for most of localization of brain area functions
 - **Aphasia**: partial or total loss of ability to articulate ideas due to brain damage
 - Paul Broca’s patient “Tan”
• Unable to produce speech
• Examined brain and found damage on lower rear portion of frontal lobe, lower front portion of parietal lobe, and upper temporal lobe
• Frontal lobe damage most important (Broca’s Area: inferior frontal gyrus, Brodmann area44/45)
 • Brodmann characterized different brain areas using chemical stains to reveal differences in cells
 o **Wernicke’s Aphasia**
 • Deficit in comprehension of language
 • Talk excessively
 • Made-up words
 • Don’t understand
 • Wernicke’s area located in Posterior regions of left hemisphere
 o Sex differences in vulnerability to Broca’s vs. Wernicke’s Aphasia
 • Male: more vulnerable rearward damage(Wernicke’s)
 • Female: more vulnerable to frontal damage (Broca’s)

• **Wernicke-Geschwind Model**
 o Broca’s area stores motor representations of speech
 o Wernicke’s area stores auditory representation of speech sounds
 o Connected by arcuate fasiculus
 o Oversimplified

• Electrostimulus used to located naming area of brain; bilingual language representation – some points represent both languages, some points just one language or the other

• **Right Hemisphere Damage**
 o Possibly aspects of personality
 o Paralysis
 • Common with Anosagnosia – denial of problems experienced
 • Abnormal Body Image
 o Hemineglect: inability to attend to objects on one side of space (on left side if stroke is on right)
 • Usually hemineglect does not occur with left side stroke because right hemisphere contains representation from both sides of visual field
 o Dressing Apraxia
• **Language Effects on Signers**
 - LH damage results in aphasia in signers, while RH damage leads to visuo-spatial deficits but largely intact language