
Our goal in this book is to illustrate, in concrete ways that you will be
able to replicate on your own, properties of connectionist models
which we believe are particularly relevant to developmental issues.
Our emphasis on the principles and functional characteristics of these
models is what sets this book apart from many of the other excellent
introductions to neural networks (some of which the reader may wish
to consult to get a broader view of architectures and techniques not
covered in this volume).

In Chapters 3 through 12 we explore a set of simulations which
focus on various aspects of connectionist models. However, we are
aware that our readers will vary widely with regard to the knowledge
and experience they bring with them. Before leaping into the simula-
tions, therefore, there are several things we think it will be useful to
do. The first three chapters therefore provide an overview of some of
the technical aspects of doing simulations. In this chapter we intro-
duce some of the terminological and notational conventions which
will be used in this book, and provide a brief overview of network
dynamics and learning. Our intent is modest here; we want to give the
reader enough of an understanding of network mechanics so that he or
she will understand what actions are being done by the simulator that
is used in the subsequent exercises. Our goal in Chapter 2 is to make
explicit the assumptions which underlie the simulation methodology
we will be using. It is easy to do simulations; it’s not as easy to do
them well and to good purpose! In Chapter 3 we describe the software
which will be used in this book. These first three chapters thus con-
tain introductory material, some of which the experienced reader
might wish to skip (although we urge that it at least be skimmed to
ensure nothing vital is missed).

CHAPTER 1 Introduction and
overview

2 CHAPTER 1

Nodes and connections

Neural networks are actually quite simple. They are made up of a few
basic building blocks: nodes and connections. Figure 1.1 shows sev-

eral sample networks, where nodes are shown as filled circles and
connections as lines between them.

Nodes are simple processing units. They are often likened to neu-
rons. Like neurons, they receive inputs from other sources. These
inputs may be excitatory or inhibitory. In the case of the neuron, exci-
tatory inputs tend to increase the neuron’s rate of firing, while inhibi-
tory inputs decrease the firing rate. This notion of firing rate is
captured in nodes by giving them a real-valued number which is
called their activation. (We might think of higher activation values as
corresponding to greater firing rates, and lower activation values to
lower firing rates.)

The input to a given node comes either from other nodes or from
some external source, and travels along connection lines. In most con-
nectionist models, it is useful to allow connections between different
nodes to have different potency, or connection strengths. The strength
of a connection may also be represented by a real-valued number, and
is usually called the connection weight. The input which flows from
one node to another is multiplied by the connection weight. If the con-

FIGURE 1.1 Various types of connectionist architectures. (a) A fully recurrent
network; (b) a three-layer feedforward network; (c) a complex
network consisting of several modules. Arrows indicate direction
of flow of excitation or inhibition.

(a)

(b)

(c)

 Introduction and overview 3

nection weight from one node to another is a negative number, then
the input from the first to the second node may be thought of as being
inhibitory; if positive, it is excitatory.

If we looked in more detail at a node, we might wish to represent
it as in Figure 1.2. This shows the node as a circle, with input connec-

tions feeding into it, and output connections leading from it. Each
input line or connection represents the flow of activity perhaps from
some other neuron or from some external source (such as light falling
on some photosensitive retinal cell).

For most of the nodes that you will meet in this book, the cell
body performs two operations. The first is the simple adding together
of the net inputs to the unit. Each input (from different nodes) is itself
a number, which can be calculated by multiplying the activation value
of the sending node by the weight on the connection from the sending
to receiving node (note that connections between nodes may be asym-
metric). If we use the letter i to index the receiving node, aj to index
the activation of those nodes which send to node i, and wij to refer to
the weights on the connections from nodes j to node i, then we may
calculate the net input to node i as

(EQ 1.1)

FIGURE 1.2 Detailed look at a single node. Inputs to the node are typically
summed (indicated by the symbol ∑ on the left); the net input is
then passed through an activation function (shown as f(net))
which yields the node’s activation. This value is then sent on to
other nodes.

∑ f(net)
outputs to

other nodes

inputs from

other nodes

neti wijaj∑=

4 CHAPTER 1

What a node actually does with that net input is another matter. In the
simplest case the node’s activation is the same as its input. In this case
the activation function (f(net)) is just the identity function. But one
can easily imagine cases where the activation of a node (its output)
might require a certain amount of “juice” before it actually starts to

fire. This is in fact typical of real neurons: In order to begin firing, the
input must exceed a certain threshold.

In many neural networks, the activation function is nonlinear
function of the input, resembling a sigmoid. In the networks we will

A word on notation

What does mean?
When you see this symbol (called “sigma”) it means
that something is going to be added. Here we use it by
itself to indicate that all the inputs will be summed
together. Another example might be

This means that we have some number of a’s to be
summed. We use i as a counter, beginning with i equal
to 0 (by convention). We sum the first a (a0), the sec-
ond, (a1), etc., till we have counted through all “i” of
them.

What does f (net) mean?
This is read “f of net.” It means we have some opera-
tion or set of operations which we want to carry out
on the quantity contained in the variable named
“net” (which we use to denote the net input to a
node). We call these operations a function, and say
that we are applying the function “f” to the quantity
“net.” (Note that so far, we have left unspecified just
what that function is.)

Unpacking Equation 1.1

This equation tells us how to calculate the total input
coming into some node. We call that node i so that the
procedure can be general. Let’s assume here we are
dealing with node 5, so i equals 5. We have already
said that the means to add some things together;
the subscript under the sigma (j) tells us how many
things need to be added. The things to be added are
indicated by the letters that follow—the and the

. By convention, two adjacent variables mean the
numbers they represent are to be multiplied first. So,
how do we calculate all of this?

We begin by setting our counter (j) to 0 (again, by
convention). That means aj is a0, or the activation of
the 0th node (whatever it happens to be). wij becomes
the w5,0 or the weight going to node 5 from node 0.
We multiply these two numbers together and save the
result. Then we set the counter j to 1, and calculate
the product of a1 (the activation of node 1) times w5,1
(the weight to node 5 from node 1). We save that
result. We continue till we have gone through all of
the j’s. Finally, we add them up (the sigma). This
operation is often called a “sum of products.”

Σ

ai∑

Σ

wij
aj

 Introduction and overview 5

be using here, nodes’ activations are given by the logistic function
shown in

(EQ 1.2)

(where ai refers to the activation (output) of nodei, neti is the net acti-
vation flowing into nodei, and e is the exponential). This equation
tells us what the output of a node will be, for any given net input. If
we graph this relationship, as we have done in Figure 1.3, we get a

better idea of how a node’s output is related to its input.
We see that over a wide range of inputs (roughly, inputs greater

than 4.0, or less than -4.0), such nodes exhibit an all-or-nothing
response—they are either fully “on” (output their maximum values of
1.0) or “off” (output their minimum values of 0.0). Within the range
of -4.0 to 4.0, on the other hand, the nodes show a greater sensitivity
and their output is capable of making fine discriminations between
different inputs. This nonlinear response lies at the heart of much of
what makes such networks interesting.

FIGURE 1.3 The sigmoid activation function often used for nodes in neural net-
works.

ai
1

1 e neti–+
----------------------=

6 CHAPTER 1

A concrete example

Although the dynamics of node activations are fairly straightforward,
it is easy to be confused between the input which a node receives, and
its output. Calculating these quantities is one of the things a simulator
does, but these can also be calculated by hand and it is useful to do
this a few times to be sure you understand what is going on.

To place things in context, let us first assemble a simple network.
A neural network consists of a collection of nodes of the sort that we
discussed in the previous section. When we talk about the architecture
of a network we are referring to the particular way in which that net-
work is assembled, or its pattern of connectivity. There are many
types of architectures, and we shall consider a number of them in this
book.

A very common architecture is one in which nodes are connected
to each other in a layered fashion. For example, consider the neural
network depicted in Figure 1.4. This network consists of four nodes

organized into two layers: an input layer and an output layer. Within
the input layer, all the nodes have connections which project to the
output layer. There are no connections between nodes within a layer
(no intra-level connections). Furthermore, in this architecture the
nodes do not possess recurrent connections, i.e., they do not have con-
nections which project back to themselves or to lower levels. Thus, in
this network, the flow of activity is in one direction only, from the
input layer to the output layer. We call these types of networks “feed-
forward networks.” In contrast, “recurrent networks” may possess
both intra- and inter-level connections as well as feedback connec-
tions from one level to an earlier level.

FIGURE 1.4 A two-layered feedforward network.

Output nodes

Input nodes

 Introduction and overview 7

Notice that the input nodes in Figure 1.4 have only a single con-
nection projecting into them. Similarly, the output nodes have only a
single connection projecting out from them. Again, this portrayal is a
gross simplification in comparison to biological neural networks. Real
neural networks are likely to receive inputs from multiple sources and
send outputs to multiple destinations. Of course, there will be some
biological neurons that receive only a single input. For example, reti-
nal photoreceptors might be thought as neurons with just a single
input—in this case, the light source that fires the neuron. More gener-
ally, though, it is appropriate to think of the single input to an input
neuron in Figure 1.4 as summarizing the input from multiple sources,
and the single output from an output neuron as summarizing the out-
put to multiple destinations.

We can now begin to consider just how the neural network per-
forms its task. First, let’s assume that each input node has a certain
level of activity associated with it. Our goal is to determine how the
activity of the input neurons influence the output nodes. To simplify
the explanation, we shall consider the process from the point of view
of just one output unit, the left-hand output in Figure 1.4. This is
highlighted in Figure 1.5. We refer the two input nodes as node0 and

node1, and to the two output nodes as node2 and node3. The activation
values of the input nodes are denoted and , respectively. Our
goal is to calculate the activation of the left-most output node, .

From Figure 1.2 we see that one of the computations that the neu-
ron performs is to calculate its net input from other neurons. The out-
put neuron in Figure 1.5 receives input from two input neurons,
namely and . These two input neurons communicate with the
output neurons via independent connections. We also said earlier that

FIGURE 1.5 The activation of the left-hand output unit from Figure 1.4.

Output nodes

Input nodes

a2

a0 a1

w20 w21

a0 a1
a2

a0 a1

8 CHAPTER 1

exactly how much input was received along a given connection
depended on the activation values of the sending units (in this exam-
ple, and), but also the weights on the connections. These
weights serve as multipliers. In Figure 1.5 we have denoted the
weight from input node0 to output node2 with the symbol , using
the convention that a weight labeled refers to the connection to
nodei from nodej. Note that since activity flows in only one direction
along the connections, the value of the weight is not the same as

. In fact, the connection does not exist in the network depicted
in Figure 1.5.

In the example above, the only inputs to node2 come from the two
input nodes. Each input is the product of the activation of the sender
unit times the weight; the total input to node2 is simply given by the
sum of these two products, i.e., .

Exercise 1.1 a

To make the example concrete, assume our network has
the weights shown, and the input nodes have the activa-
tions shown.

1. What will be the input which is received by node2?

The net input by itself does not determine the activity of
the output node. We also need to know the activation
function of the node. Let us assume our nodes have acti-
vation functions as given in Equation 1.2 (and shown
graphically in Figure 1.3). In the table below we give
sample inputs and the activations they produce, assum-
ing a logistic activation function.

a0 a1

w20
wij

w20
w02 w02

w20a0 w21a1+

Output nodes

Input nodes

a2

1 1

0.75 0.5

 Introduction and overview 9

In many networks, it is also useful to allow nodes to have what
amounts to a default activation. Note that in the absence of any input
(which means an input of 0.0), our nodes will have an output of 0.5
(see Exercise 1.1). Suppose we want a node to be “off”—have an out-
put of 0.0—in the absence of input. Or we might wish its default state
to be on.

We can accomplish this by adding one additional node to our net-
work. This node receives no inputs, but is always fully activated and
outputs a 1.0. The node can be connected to whatever other nodes in
the network we wish; we often connect this node to all nodes except
the input nodes. Finally, we allow the weights on the connections
from this node to its receiving nodes to be different.

This effectively guarantees that all the receiving nodes will have
some input, even if all the other nodes are off. Since the extra node’s

2. What will be the activation of node2, assuming the
input you just calculated?

a. Answers to exercises are given at the end of each chapter.

Exercise 1.1 a

INPUT ACTIVATION
-2.00 0.119

-1.75 0.148

-1.50 0.182

-1.25 0.223

-1.00 0.269

-0.75 0.321

-0.50 0.378

-0.25 0.438

0.00 0.500

0.25 0.562

0.50 0.622

0.75 0.679

1.00 0.731

1.25 0.777

1.50 0.818

1.75 0.852

2.00 0.881

10 CHAPTER 1

output is always 1.0, the input it sends to any other node is just
—or the value of the weight itself.

Because of what it does, this extra node is called the bias node
(only one is needed per network). What it does is similar to giving
each node a variable threshold. A large negative bias means that the
node will be off (have activations close to 0.0) unless it receives suffi-
cient positive input from other sources to compensate. Conversely, if
the bias is very positive, then the receiving node will by default be on
and will require negative input from other nodes to turn it off. Allow-
ing individual nodes to have different defaults turns out to be very
useful.

Learning

So far we have discussed simple networks that have been pre-wired.
In Exercise 1.1 we gave as an example a network whose weights were
determined by us. For some other problem, we might wish the net-
work to learn what those weights should be.

In this book we will be using a learning algorithm called “back-
propagation of error” (Rumelhart, Hinton, & Williams, 1986; see also
Le Cun, 1985; Werbos, 1974). Backpropagation is also referred to as
the ‘generalized delta rule’. (This algorithm is described fully in the
paper by Rumelhart et al. (1986) and the reader is urged to consult
that paper for a more detailed explanation.)

The basic strategy employed by “backprop” is to begin with a net-
work which has been assigned initial weights drawn at random, usu-
ally from a uniform distribution with a mean of 0.0 and some user-
defined upper and lower bounds (frequently). The user also has a
set of training data, which come in the form of input/output pairs. The
goal of training is to learn a single set of weights such that any input
pattern will produce the correct output pattern. Often it is also desired
that those weights will allow the network to generalize to novel data
not encountered during training.

The training regime involves several steps. First, an input/output
pattern is selected, usually at random. The input pattern is used to
activate the network, and activation values for output nodes are calcu-
lated. (Note that in the example in Figure 1.4 our network has only

1.0 wij×

1.0±

 Introduction and overview 11

input nodes and output nodes. We could just as easily have additional
nodes between these two layers, and in fact there are good reasons to

wish to have such “hidden nodes”; see the companion volume Rethink-
ing Innateness, Chapter 1 and Chapter 3, this volume.)

Because the weights of the network have been chosen at random,
the outputs that are generated at the outset of training will typically
not be those that go with the input pattern we have chosen; the outputs
are more likely to be garbage than anything else. In the second step of
training, we compare the network’s output with the desired output
(which we call the teacher pattern). These two patterns are compared
on a node-by-node basis so that for each output node we can calculate
its error. This error is simply the difference in value between the tar-
get for nodei on training pattern p (we will call this target tip) and the
actual output for that node on that pattern (oip), multiplied by the
derivative of the output node’s activation function given its input.
We’ll call that error (is pronounced “delta”):

(EQ 1.3)

So the problem now is how to apportion credit or blame to each of the
connections in the network. We know, for each output node, how far
off the target value it is. What we need to do is to adjust the weights
on the connections which feed into it in such a way as to reduce that
error. That is, we want to change the weight on the connections from
every nodej coming into our current nodei in such a way that we will

What is ?

 (pronounced “f prime of netip”) is the first
derivative of the node’s activation function. This is
just the slope of the activation function. The activa-
tion function, the sigmoid, is defined mathematically
in (EQ 1.2) and depicted graphically in Figure 1.3.
Notice that the slope is steepest around the middle of
the function (where the net input is close to zero). In
fact, the slope of the sigmoid activation function is
given precisely by the expression . This is
plotted in Figure 1.6.

The error term is just the product of the actual
error on the output node and the derivative of the
node’s activation function. For large values of net
input to the node (both positive and negative) the
derivative is small. Consequently, will be small.
Net input to a node tends to be large when the connec-
tions feeding into the node are strong. Conversely,
weak connections tend to yield a small input to a
node. With small values of net input, the derivative of
the activation function is large (see Figure 1.6) and

 can be large—provided the output error is large.

f ′ netip()

f ′ netip()

oip 1 oip–()

δip

δip

δip

δip δ

δip tip oip–()f ′ netip() tip oip–()oip 1 oip–()= =

12 CHAPTER 1

reduce the error on this pattern. This change in weight is calculated
as:

(EQ 1.4)

That is, we want to know how changes in error are related to changes
in weights. (The —pronounced “eta”—is known as the learning rate,
and is a small constant. Since our goal is to find a set of weights
which will work for all input/output patterns, we should be cautious
in changing the weights too much on any given pattern.)

What does mean?

This is what is called a partial derivative. What it
expresses is actually very straightforward and can be
understood intuitively without knowing calculus.
Basically, this term measures how the quantity on the
top changes when the quantity on the bottom is
changed. In this particular case, we want to know
how the error (E) is affected by changing the weights
(w).

If we knew this, then we would know how to change
the weight (the symbol—also pronounced
“delta”—on the left of Equation 1.4 means
“change”) in order to decrease the error, where error
will mean the discrepancy between what the network
is outputting, compared with what we want it to be
outputting.

FIGURE 1.6 The derivative of the activation function

∆wij η
Ep∂
wij∂----------–=

Ep∂
wij∂

∆

η

 Introduction and overview 13

Of course, the real question is how we compute the expression on
the right, practically speaking. It turns out that this quantity can be
calculated as:

(EQ 1.5)

This is often called the “delta rule.” We won’t explain the math
behind the derivation here; if you are interested, consult Rumelhart et
al., 1986; or Hertz, Krøgh & Palmer, 1991.

We do three things with this equation. First, we make our changes
small, so is often set to some value less than 1.0 (e.g., 0.1 or 0.3).
We do this because, if we are updating weights after every pattern, we
don’t want to have changes be too drastic. There are other patterns yet
to be encountered, and we wish to proceed cautiously so that we can
find a set of weights which will work for all the patterns, not just the
current one. Second, the change in weight depends on the error we
have for this unit, , as calculated in Equation 1.3. Finally, we also
take into account the output we have received from the sending node,
oj. This makes sense because the node’s error is related to how much
(mis)information it has received from another node; if the other node
is highly active and has contributed a great deal to our current activa-
tion, then it bears a large share of the responsibility for our error.

We proceed in this manner, calculating errors on all output nodes,
and weight changes on the connections coming into them (but we do
not yet actually make the changes). Then we move down to the hidden
layer(s) (if there are any). We use the same equation, Equation 1.5, for
changing weights that lead into the hidden units from below. However,
we cannot use Equation 1.3 to compute the hidden nodes’ errors,
since there is no given target against which they can be compared.
Instead, we make the hidden nodes “inherit” the errors of all the nodes
they have activated, using the same principle of credit/blame. If the
nodes activated by a hidden node have large errors, then the hidden
unit shares responsibility. So we calculate its error by simply sum-
ming up the errors of the nodes which it activates (multiplied by the
weight between the nodes, since obviously if the weight is very small
the hidden node has much less responsibility). This procedure is sum-
marized in Equation 1.6 where the subscript i indicates the hidden
node, p indicates the current pattern and k indexes the output node
feeding error back to the hidden node:

∆wij ηδipoj=

η

δip

14 CHAPTER 1

(EQ 1.6)

(As in Equation 1.3, the derivative of the hidden unit’s activation
function is also multiplied in.)

This procedure continues iteratively down through the network,
hence the name “backpropagation of error.” When we get to the layer
above the input layer (inputs have no incoming weights), we take the
third and final step of actually imposing the weight changes.

Exercise 1.2

1. Why do we wait until we have calculated all the s
before making the weight changes, rather than
change weights as we go down the network?

2. Imagine we are training the single-layered network
shown above on the left. The network is shown with
a set of activation values for the input nodes and
weights connecting the input nodes to the output
node. Assume that the output node has a sigmoid
activation function (see Exercise 1.1), that the
desired output is and that the learning rate

. Calculate the changes that will be made
to the two weights in the network. Hint: You will
also need to know the value of the derivative in
Equation 1.3. These are tabulated for different acti-
vation values below. Don’t forget to calculate net
inputs to determine the activation value from the
table in Exercise 1.1.

δip f ′ netip() δkpwki∑=

δ

Output nodes

Input nodes

a2

1 1

0.75 0.5 a2

0.7

1 1

a3 a4

0.3–

0.10.5

Output nodes

Input nodes

Hidden nodes

(a) (b)

1.0
η 0.1=

 Introduction and overview 15

3. Repeat the calculations for the multi-layered net-
work with hidden nodes using the same learning rate
parameter and target activations of on both out-
put nodes. Hint: Calculate s for the output nodes
in just the same way as you did in Exercise 1.2.1.
However, you will also need to consult Equation 1.6
to determine s for the hidden node.

4. What training conditions promote maximum weight
changes in a network? Hint: Consult Equation 1.3
and Equation 1.5 before attempting to answer this
question.

Exercise 1.2

 ACTIVATION DERIVATIVE
0.0 0.00

0.1 0.09

0.2 0.16

0.3 0.21

0.4 0.24

0.5 0.25

0.6 0.24

0.7 0.21

0.8 0.16

0.9 0.09

1.0 0.00

1.0
δ

δ

16 CHAPTER 1

Answers to exercises

Exercise 1.1

1. If the activation values of the two input nodes were and , respec-
tively and the connection weights were and then the net input
to node2 would simply be the sum of the products of each weight by the
input coming in along that weight:

 .

2. If node2 receives this input, we can read off its corresponding activation
by consulting the activation table in Exercise 1.1. We see that an input of
1.25 leads to an activation of 0.777. Note that the activation function
scales inputs into the range from 0.0 to 1.0. When the net input is 0.0,
the node’s output is exactly in the midrange of its possible activation
range: 0.5. Positive inputs result in activations that are greater than 0.5;
negative inputs result in activations that are less than 0.5.

Exercise 1.2

1. After we compute the weight changes for a layer, we hold off actually
changing weights until at least after we have calculated the errors on the
nodes below us. This is because the errors for those nodes are calculated
using Equation 1.6. In that equation, the nodes below a layer inherit
some part of the error of the layer above; how much error is based on the
error itself, multiplied by the weights from the lower to the upper layers.
So we do not want to change those weights until after we have appor-
tioned blame, using the weights that were in effect at the time the output
pattern was generated.

2. As we saw in Exercise 1.1 the activation of the output node is . This
means that the discrepancy between the actual output and the desired
output . The calculation of from
Equation 1.3 requires we determine the derivative for an acti-
vation of . From Exercise 1.2 we see that an activation value of

 yields a derivative value of approximately . Substituting these
values in Equation 1.3 we get:

1.0 1.0
0.75 0.5

netinput2 1.0 0.75×() 1.0 0.5×()+ 1.25= =

0.77

t o– 1.0 0.77– 0.23= = δ
f ′ net()

0.77
0.77 0.16

 Introduction and overview 17

We are now in a position to calculate the individual weight changes from
Equation 1.5:

Recall that the constant defines the learning rate and stands for the
activation of the input node . Similarly, the weight change for the con-
nections from input node to the output node is given by:

In this example, the changes to each of the weights are identical since
the input nodes have the same activation. Note that the overall effect of
this training trial is to change the connections only slightly. The process
would have to be repeated many times before the error is reduced to
zero. Keeping the weight changes small helps prevent the network mak-
ing adjustments that might not be suitable for other input/output pat-
terns.

3. First calculate the activations of all the receiving nodes:

Second calculate for the output nodes:

Now calculate for the hidden unit using Equation 1.6:

We can now determine all the weight changes using Equation 1.5:

δ2 t o–()f ′ net2() 0.23 0.16× 0.037= = =

∆w20 ηδ2o0 0.1 0.037 1.0×× 0.0037= = =

η oo
0

1

w21∆ ηδ2o1 0.1 0.037 1.0×× 0.0037= = =

a2 logistic 1.0 0.5×() 1.0 0.1×()+() 0.65≈=

a3 logistic 0.65 0.3–×() 0.45≈=

a4 logistic 0.65 0.7×() 0.6≈=

δ3 4,

δ3 t3 o3–()f ′ net3() 1.0 0.45–() 0.24×≈ 0.13= =

δ4 t4 o4–()f ′ net4() 1.0 0.6–() 0.24×≈ 0.1= =

δ2

δ2 f ′ net2() δkwk2

k 3 4,∈

∑=

0.23 0.13 0.3–×() 0.1 0.7×()+()=

0.007=

18 CHAPTER 1

Note how all the weight changes are made after the s for output and
hidden nodes have been computed. The learning rate scales the
size of the weight changes and thereby helps to ensure the network is not
too influenced by errors for individual patterns.

4. There are several factors that determine how much the weights are
changed on any learning trial. These are summarized in Equation 1.5.
The learning rate influences the proportion of the error term that is
used to change the weights. So large learning rates will tend to lead to
large weight changes. The error term itself is defined as the product of
the actual output error and the derivative of the sigmoid activation func-
tions (see Equation 1.3). Large errors will also tend to lead to large
weight changes. However, the effect of the error is modified by the
derivative of the sigmoid. We saw in Figure 1.6 that the derivative is
largest when the input to the node is small. Small inputs tend to go
together with small weights. Networks tend to have small weights at the
beginning of training. Hence, networks are most sensitive to learning
early in their lives. As the network gets older, its weights get bigger
leading to large net input values. Large net inputs give small derivatives,
leading to small weight changes. Older networks find it more difficult to
learn!

w20∆ ηδ2o0 0.1 0.007 1.0×× 0.0007= = =

∆w21 ηδ2o1 0.1 0.007 1.0×× 0.0007= = =

∆w32 ηδ3o2 0.1 0.13 0.65×× 0.008= = =

∆w42 ηδ4o2 0.1 0.1 0.65×× 0.007= = =

δ
η 0.1=

δ

δ

