
Why build models?

The idea of building formal models to test a theory of behavior is not
a new one, nor original with connectionists. Models in general play an
important role in the behavioral sciences; one has only to look
through a text in mathematical psychology, in economics, or in soci-
ology to see this. In fact, a model is simply a detailed theory. Actual
computer simulations of models are perhaps not so common, but they
play a special role in connectionism.

There are several reasons why computer simulations are so use-
ful. First, there is the matter of explicitness. Constructing a model of
a theory or an account, and then implementing it as a computer pro-
gram, requires a level of detail which is not required by mere verbal
description of the behavior. These details may turn out to be crucial
for testing the model. Even the process of converting the model to a
program can be useful, because it encourages us to clarify our think-
ing and consider aspects of the problem we might have skipped over if
we were simply describing the theory in words.

Second, there is the fact that it is often difficult to predict what
the consequences of a model are, especially if it is at all complicated.
There may be interactions between different parts of our model which
we cannot work out in our heads. Connectionist models have the addi-
tional problem that, although in some ways they are very simple, they
involve processing elements which are nonlinear. While linear sys-
tems can sometimes be analyzed in advance, nonlinear systems fre-
quently need to be simulated and then studied empirically. This is
common practice among physicists who study nonlinear dynamics,
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for example; much of their work is empirical. Frequently the only way
to see how a model will behave is to run it and see. 

Third, we find that the unexpected behaviors exhibited by the
simulations can suggest new experiments we can run with humans. We
often construct our models to fit some behavioral data we are inter-
ested in understanding. But once we’ve got the simulation up and run-
ning, we can see how it will respond in novel situations. In many
cases, these responses are unanticipated and let us make predictions
about how humans would respond in these untested situations. We can
run these experiments, and if our models are good—and we are
lucky!—the new data may bear out the predictions. If they don’t,
that’s useful information too, because it lets us know there is some-
thing wrong in the model.

Fourth, there may be practical reasons why it is difficult to test a
theory in the real world. For example, if we have hypotheses about the
effects of brain damage on human subjects, our “experiments” are
limited to the tragedies of nature. The paucity of available data may
make it difficult to see global patterns. With a model, we can system-
atically vary parameters of interest through their full range of possible
values. This often reveals patterns which we might have otherwise
missed. We can then go search for corresponding instances in the real
world, armed with our model’s predictions. Models can thus help
stimulate new empirical work, as well as describe existing data.

Finally, and perhaps most important, simulations play an impor-
tant role in helping us understand why a behavior might occur. Some-
times it is enough to just build a simulation and have it do what we
want. But in most cases, what we’re after is an explanation. When we
work with human subjects, we build hypotheses, based on observed
behaviors, about why they act as they do. We try to be creative and
think of clever ways to test our hypotheses. We almost never can get
inside the subject to verify whether our theories are accurate. Our
computer simulations, on the other hand, are open for direct inspec-
tion. We need not be content with simply making theories about their
behavior. We can actually open them up and peer at the innards.
Doing this is not always easy, but we think it is one of the most
important reasons to do simulations. For this reason, we will spend a
lot of time in this book talking about network analysis and about
understanding why networks work the way they do. We will also
focus on trying to understand the basic principles which underlie the
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simulations so that we can go beyond the specifics of any given simu-
lation.

We should add a word of caution here. Computer models play a
similar role in behavioral analysis as animal models play in medicine
and the biological sciences. Both sorts of models are metaphors. As
such, they are only as good as their resemblance to the real system
whose behavior they claim to model. Some animal models are very
useful for understanding mechanisms of human physiology, because
the animals are known to have close anatomical or physiological simi-
larities to humans. Other animals make poor models (we wouldn’t
want to study human vision using the fruitfly, for example). The same
holds true for computer models. 

This is one reason why the question of a model’s plausibility is so
important. We need to worry not only about the neural plausibility of
the model, but also it’s psychological plausibility. We want our mod-
els to be learning behaviors which we think resemble those of humans.
And we want the models to be given the same kind of information
which we think is plausibly available to humans as well. This is not
always an easy thing to know.

There is never any guarantee that the model is an accurate mirror
of the human. The most we can say is that there is such a close corre-
spondence between the behaviors, and between the kinds of con-
straints which are built into the model and which operate in humans,
that we believe the model captures the essence of what is going on in
the human. 

The exciting thing is that the study of these artificial systems can
also liberate us from biases and preconceptions which we might not
even be aware of. We approach our study of behavior with a rich leg-
acy of theories. Sometimes this legacy blinds us to ways of seeing
phenomena which might lead to new analyses. Connectionist models
often exhibit behaviors which are eerily like those of humans. We are
surprised when we look inside the model to see what it is really doing,
and discover that the model’s solution to the problem may be very dif-
ferent from what we assumed was the obvious and only reasonable
solution. Sometimes the model’s solution is much simpler than our
own theories; sometimes it is more complicated. But often, the solu-
tion is different, and can generate new hypotheses and insights.
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Simulations as experiments

It’s easy to do simulations, but hard to do them well. The ready avail-
ability of off-the-shelf neural network simulators makes it compara-
tively easy to train networks to do lots of things. Much of the initial
flurry of excitement and interest in neural network learning was
brought about by the discovery that networks could be successfully
trained on a wide range of tasks. During the early period of connec-
tionist research, exploring the many things that networks could do
was intrinsically interesting.

But in the long haul, novelty wears off. We begin to find, too, that
it is actually not all that easy to train networks on many tasks. And
even when a network is trained successfully, we begin to ask our-
selves, “So what? What have we learned or demonstrated that we did
not know before?”

In fact, in our view, running a good simulation is very much like
running any good experiment. We begin with a problem or goal that is
clearly articulated. We have a well-defined hypothesis, a design for
testing the hypothesis, and a plan for how to evaluate the result. And
all of this is done prior to ever getting close to the computer.

The hypothesis typically arises from issues which are current in
the literature. Simulations are not generated out of the blue. The
nature of the hypothesis may vary. In some cases we may wish to test
a prediction that has been made. Or we might wish to see whether an
observed behavior might be generated by another mechanism (for
example, as a way of testing the claim that only a certain mechanism
is able to produce the behavior). Or we might have a theory of how
some behavior is accomplished, and the simulation lets us test our
model. Only rarely do we indulge in “fishing expeditions” (in which
we start with no clearly defined goal); when we do, we must be pre-
pared to come home empty-handed. 

The hypothesis and goals of the simulation must be formulated
very explicitly before we begin to think about the design. This is cru-
cial, because when the simulation is done, we will need to know how
to evaluate the results. What tests we run to evaluate the simulation
will depend on what our initial questions were. Furthermore, our abil-
ity to run these tests will be limited by the design of the simulation.
So the design itself is highly constrained by the hypothesis. 
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Such considerations are of course true of any experiment. We are
simply emphasizing that these methodological constraints are equally
true of simulations. However, there are some ways in which the corre-
spondences between running simulations and running experiments
with human subjects might not be as obviously similar. These largely
have to do with design and evaluation issues.

The design of a simulation involves several things which may be
unfamiliar to some. These include the notion of a task, stimulus repre-
sentations, and network architecture. Ultimately, how to find the right
task, representation, and architecture are best illustrated by example.
That is one of the purposes of the simulation exercises which follow
in the remaining chapters. But we think it is useful to begin with some
explicit discussion of these issues to help focus your attention later as
you work through the exercises.

The task

When we train a network, our intent is to get it to produce some
behavior. The task is simply the behavior we are training the network
to do. For example, we might teach a network to associate the present
tense form of a verb with its past tense form; to decide whether or not
a beam with two weights placed at opposite ends will balance; to
maintain a running count of whether a digit sequence sums to an odd
or even number; or to produce the phonological output corresponding
to written text.

We need to be a bit more specific, however. What does it mean to
teach a network to read text, for example?

In the networks we will be dealing with in this book, a task is
defined very precisely as learning to produce the correct output for a
given input. (There are other ways of defining tasks, but this is the
definition that works best for the class of networks we will use.) This
definition presupposes that there is then a set of input stimuli; and
paired with each input is the correct output. This set of input/output
pairs is often called the “training environment.” 

There are several important implications of this which we need to
make explicit. First, we will have to be able to conceptualize behav-
iors in terms of inputs and outputs. Sometimes it will be easy to do
this, but other times we may have to adopt a more abstract notion of
what constitutes an input and what constitutes an output. We’ll give a
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simple example. Suppose we wish to teach a network to associate two
forms of a verb. Neither form properly constitutes an input, in the
sense that it is a stimulus which elicits a behavior. However, we might
nonetheless train the network to take one form as input and produce
the paired associate as output. This gives us the input/output relation-
ship that is required for training, but conceptually we might interpret
the task in more abstract terms as one of associating two forms.

Secondly, note that we are teaching the network a task by exam-
ple, not by explicit rule. If we are successful in our training, the net-
work will learn the underlying relationship between the input and
output by induction. This is an appealing model for those situations
where we believe that children (and others) learn by example. How-
ever, it is extremely important not to assume that the network has in
fact learned the generalization which we assume underlies the behav-
ior. The network may have found some other generalization which
captures the data it has been exposed to equally well, but is an easier
generalization to extract, given the limited data to which the network
has been exposed. (What, precisely, is meant by “easier” is an impor-
tant and fascinating question which is not fully understood.) This is
where our testing and evaluation become important, because we need
ways to probe and understand the content of the network’s knowledge. 

Finally, a concomitant of this style of inductive learning is that
the nature of the training data becomes extremely important for learn-
ing. In general, networks are data grubs: They cannot get too much
information! The more data we have, the better. And if we have too
little information, we run the risk that the network will extract a spuri-
ous generalization. But success in learning is not merely a question of
quantity of information. Quality counts too, and this is something
which we will explore in several chapters. The structure of our train-
ing environment will have a great deal to do with outcome. And in
some cases, it is even better to start with less, rather than more data.

A word about strategy is also appropriate here. Some tasks are
better (more convincing, more effective, more informative) than oth-
ers for demonstrating a point. It is easy to fall into the pitfall of “giv-
ing away the secret.” This has to do with the role which is played by
the output we are training the network to give us.

When we train the network to produce a behavior, we have a tar-
get output which the network learns to generate in response to a given
input. This target output is called the “teacher,” because it contains
the information which the network is trying to learn. An important
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question we should ask ourselves, when we think about teaching net-
works a task, is whether the information represented in the teacher is
plausibly available to human learners. For example, it might be inter-
esting to teach a network to judge sentences as grammatical or
ungrammatical. But we must be cautious in interpreting the results,
because it is questionable that the kind of information we have pro-
vided our network (the information about when to produce an output
of “ungrammatical” and when to say “grammatical”) is available to
children. If we believe that this information is not available, then the
lessons from the network must be interpreted with caution.

Or consider the case where we are interested in the process by
which children learn to segment sounds into words. Let us say we are
interested in modeling this in a network in order to gain some insight
into the factors which make it possible, and the way in which the task
might be solved. There are several ways to model this process. One
task might be to expose a network to sequences of sounds (presenting
them one at a time, in order, with no breaks between words), and
training the network to produce a “yes” whenever a sequence makes a
word. At other times, the network should say “not yet.” Alternatively,
we might train a network on a different task. The network could be
given the same sequences of sounds as input, but its task would be
simply to predict the next sound. (This example in fact comes from
one of the later exercises in the book.)

It turns out that networks can learn both sorts of tasks without too
much difficulty. In the second task, however, there is an interesting
by-product. If we look at the network’s mistakes as it tries to predict
the next sound, we find that at the beginning of a word, the network
makes many mistakes. As it hears more and more of the word, the pre-
diction error declines rapidly. But at the end of the word, when the
network tries to predict the beginning of the next sound, the prediction
error increases abruptly. This is sensible, and tells us that the network
has learned the fact that certain sequences (namely, sequences which
make up words) cooccur reliably, and once it hears enough of a
sequence it can predict the rest. The prediction error also ends up
being a kind of graph of word boundaries. 

In both tasks the network learns about words. In the first case, it
does so explicitly, from information about where words start. In the
second task, the network learns about words also, but implicitly. Seg-
mentation emerges as an indirect consequence of the task. The disad-
vantage of the first task is that it really does give away the secret. That



26           CHAPTER 2

is, if our goal is to understand how it is that segmentation of discrete
words might be learned, assuming a continuous input in which seg-
ment boundaries are not marked, then we learn very little by teaching
the task directly. The question is of interest precisely because the
information is presumably not available to the child in a way which
permits direct access to boundary information. Giving the information
to the network thus defeats the purpose of the simulation. 

Representing stimuli

We have said that a network is trained on inputs and outputs, but we
have not been very specific about what those inputs and outputs look
like. Network representations take the form of numbers; these may be
binary (0’s or 1’s), integer valued (-4, 2, 34, etc.), or continuously val-
ued (0.108, 0.489, etc.). Very frequently, information is represented
by a collection of numbers considered together; these are called vec-
tors and might be shown as [1 0 1 1 0]. In this case, we must have 5
input nodes; this vector tells us that the first, third, and fourth nodes
are “on” (i.e., are set to 1) and the second and fifth are “off” (set to 0).

So the question is how we represent information of the sort we are
interested in—words, actions, images, etc.—using numbers. This is in
fact a very similar sort of problem which the nervous system solves
for us. It converts sensory inputs into internal codes (neuronal firing
rate, for example) which can be thought of as numerical. We might
think of our problem as that of building artificial sensors and effectors
for our networks.

The problem for us is that there are usually many different ways
of representing inputs, and the way we choose to represent informa-
tion interacts closely with the goals of the simulation. The basic issue
is how much information we want to make explicitly available to the
network. 

At one extreme, we might wish to represent information quasi-
veridically. We might present an image as a two-dimensional array of
dots, in which black dots are represented as 1s and white dots are rep-
resented as 0s (or vice versa; interestingly, it doesn’t matter as long as
we are consistent in our mapping). This is like the half-tone format
used in newspapers. If our inputs are speech, we might present the
digitized voltages from an analog-digital converter, in which each
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input is a number corresponding to the intensity of the sound pressure
wave.

Or we might choose more abstract representations. We might
encode a spoken word in terms of phonetic features such as voiced, or
consonantal. Each sound would be represented as a bundle of such
features (a bundle being a vector), and the word would be a sequence
of feature vectors.

There are two bottom lines which guide us. First, the network can
only learn if it is given sufficient information. If our encoding
includes information which is irrelevant, the network may learn to
ignore it and solve the task using the useful information; but if the
input representation does not include information which is crucial for
the task, the network cannot learn at all. Second, just as was true in
the design of the task, we must be concerned not to give the answer
away. One goal of a simulation might be to see if a network can learn
certain internal representations (say, at the level of hidden unit activa-
tion patterns). In that case, it makes little sense to go ahead and give
the network the target representations as part of its input.

Choosing the right architecture

The architecture of a network is defined primarily by the number and
arrangement of nodes in a network: How many nodes there are, and
how they are interconnected. Although in theory, any task can be
solved by some neural network, not any neural network can solve any
task. To a large degree, the form of the network determines the class
of problems which can be solved. 

In this handbook we utilize two major classes of architectures:
feedforward networks and simple recurrent networks. In feedforward
networks, the information flows from inputs to outputs; in recurrent
networks, some nodes may also receive feedback from nodes further
downstream. In both cases of networks, some nodes are designated as
inputs and others are designated as outputs. How many of each
depends on the task and the way in which inputs and outputs are repre-
sented. (For example, if a network will be taking images as inputs and
these are represented as 100x100 dot arrays, then there must be 10,000
input nodes.) Additional hidden units may also be designated. 

Determining the best architecture for a task is not easy and there
are no automatic procedures for choosing architectures. To a large
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degree, choice of architecture reflects the modeler’s theory about
what information processing is required for that task. As you work
through the exercises, try to be aware of the differences in architec-
ture. Ask yourself what the consequences might be if different archi-
tectures were chosen; you can even try simulations to test your
predictions.

Analysis

Simulations generally involve two phases. In the first, we train a net-
work on a task. In the second, we evaluate its performance and try to
understand the basis for its performance. It is important that we antic-
ipate the kinds of tests we plan to perform before the training phase.
Otherwise we may find, once training is over, that we have not struc-
tured the experiment in a way which lets us ask important questions.
Let us consider some of the ways in which network performance can
be evaluated.

Global error. During training, the simulator calculates the dis-
crepancy between the actual network output activations, and the target
activations it is being taught to produce. Most simulators will report
this error on-line, frequently summing or averaging it over a number
of patterns. As learning progresses, the error will decline. If learning
is perfect on all the training patterns, the error should go to zero.

But there are many cases where error cannot go to zero, even in
the presence of learning. If a network is being trained on a task in
which the same input may produce different outputs (that is, a task
which is probabilistic or non-deterministic), then the best the network
can do is learn the correct probabilities. However, there will still be
some error.

Individual pattern error: Global error may also be misleading
because if there are a large number of patterns (i.e., input/output
pairs) to be learned, the global error (averaged over all of them) may
be quite low even though some patterns are not learned correctly. If
these are in fact the interesting patterns, then we want to know this.
So it is important to look at performance in detail and be precise about
whether the entire training set has been learned.

It may also be valuable to construct special test stimuli which
have not been presented to the network during training. These stimuli
are designed to ask specific questions. Does the network’s perform-
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ance generalize to novel cases? What in fact has the network learned?
Since there are often multiple generalizations which can be extracted
from a finite data set, probing with carefully constructed test stimuli
can be a good way to find out what regularities have been extracted.

Analyzing weights and internal representations: Ultimately, the
only way to really know what a network is doing, as well as under-
stand how it is doing it, is to crack it open and look at its innards. This
is an important advantage which network models have over human
subjects; but like humans, the insides are not always easy to under-
stand. Finding new methods to analyze networks is an area which is of
great interest at the moment.

One technique which has been used profitably is hierarchical clus-
tering of hidden unit activations. This technique can be useful in
understanding the network’s internal representation of patterns. After
training, test patterns are presented to the network. These patterns
produce activations on the hidden units, which are then recorded and
tagged. These hidden unit patterns are vectors in a multi-dimensional
space (each hidden unit is a dimension), and what clustering does is to
reveal the similarity structure of that space. Inputs which are treated
as similar by the network will usually produce internal representations
which are similar—i.e., closer in Euclidean distance—to each other.
Clustering measures the inter-pattern distance and represents it in tree
format, with closer patterns joined lower on the tree. The partitioning
of its internal state space is often used by networks to encode catego-
ries. The hierarchical nature of the category structure is captured by
the subspace organization.

The limitation of hierarchical clustering is that it does not let us
look at the space directly. What we might like is to be able to actually
visualize the hidden unit activation patterns as vectors in hidden unit
space in order to see the relationships. The problem is that it’s not
easy to visualize high-dimensional spaces. Methods like principal
component analysis and projection pursuit can be used to identify
interesting lower-dimensional “slices” in which interesting things
happen. We can then move our viewing perspective around in this
space, looking at activity in various different planes.

A third useful technique involves looking at activation in conjunc-
tion with the actual weights. When we look at activation patterns in a
network, we are only looking at part of what a network “knows.” The
network manipulates and transforms information by means of the con-
nections between nodes. Looking at the weights on these connections



30           CHAPTER 2

is what tells us how the transformations are being carried out. One of
the most popular methods for representing this information is by
means of what are called “Hinton diagrams” (because they were first
introduced by Geoff Hinton; Hinton, 1986), in which weights are
shown as colored squares with the color and size of the square indicat-
ing the magnitude and sign of the connection. Techniques involving
numerical analysis have also been proposed, including skeletonization
(Mozer & Smolensky 1989) and contribution analysis (Sanger, 1989).

What do we learn from a simulation?

Much of the above may still seem abstract and unclear. That’s ok. Our
goal here is simply to raise some questions now so that when you do
the simulation exercises in the remaining chapters, you will be con-
scious of the design issues we have discussed here. Ask yourselves
(and be critical) whether or not the simulations are framed in a way
which clearly addresses some issue, whether or not the task and the
stimuli are appropriate for the points that are being made, and whether
you feel at the end that you have learned something from the simula-
tion.

That’s the bottom line: What have we learned from a simulation?
In general there are two kinds of lessons we might learn from a simu-
lation. One is when we have a hypothesis about how some task is car-
ried out, and our simulation shows us that our hypothesis can in fact
provide a reasonable account of the data. The second thing we may
learn is new ways in which behaviors may be generated. Having
trained an artificial system to reproduce some behavior of interest, our
analysis of the model’s solution may generate new ideas about how
and why behaviors occur in humans. Of course, the model’s solution
need not be the human’s; verifying that it is requires additional empir-
ical work. But if nothing else, the opportunity to discover new solu-
tions to old problems is both valuable and exhilarating!


