
Defining the task

In this chapter, you will investigate how a neural network can be
trained to map the Boolean functions AND, OR and EXCLUSIVE OR

(XOR). Boolean functions just take some set of inputs, usually 1s and
0s, and decide whether a given input falls into a positive or a negative
category. We can think of these Boolean functions as equivalent to the
input and output activation values of the nodes in a network with 2
input units and 1 output unit. Table 3.1 summarizes the mapping con-

tingencies for each of these 3 functions. The first two columns of
Table 3.1 specify the input activations. There are 4 possible input pat-
terns made up from the 22 possible binary combinations of 0 and 1.
Columns 3–5 specify the single output activation for the desired

TABLE 3.1 The Boolean functions AND, OR and XOR

Input Activations Output Activation

Node 0 Node 1 Node 3

AND OR XOR

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

CHAPTER 3 Learning to use
the simulator

32 CHAPTER 3

Boolean function we require our network to compute. These input pat-
terns and output activations define the training environment for the
network we will build.

It may seem odd that we are asking you to perform your first simula-
tions with abstract Boolean functions that would appear to have little
bearing on our understanding of the development of psychological
processes. However, we have several reasons for starting in this fash-
ion. First, the networks that you will use to learn these functions are
quite simple and relatively easy to construct. They provide a (hope-
fully) painless introduction to conducting your own simulations. Sec-
ond, the type of networks that you will need to learn AND, OR and
XOR differ in interesting and instructive ways. Many of the problems
that you will encounter for these Boolean functions will illustrate
some fundamental computational properties of networks that will
have direct implications for your understanding of the application of
networks to more complex problems. Indeed, we still often go back to
these simple Boolean functions to help us work through issues which
seem unfathomable in more complicated networks.

Defining the architecture

Before you can configure the simulator, you need to decide what kind
of network architecture to use for the problem at hand. Let us start
with the Boolean function AND. There are 4 input patterns as speci-
fied in Table 3.1 and 2 distinct outputs. Each input pattern specifies 2
activation values and each output a single activation. For every input
pattern, there exists a well-defined output. So for this problem, you
should use a simple feedforward network with 2 input units and a sin-
gle output unit. An example of the type of network architecture you
require is shown in Figure 3.1. These networks are called “single-lay-

Exercise 3.1

• Do you notice anything peculiar about any of these
functions? Which one would you say was the odd
one out?

 Learning to use the simulator 33

ered perceptrons” because they have single layer of weights between
input and output nodes. In this book, these networks are trained with
the “delta rule” described in Equation 1.5 on page 13.

We have now completed the conceptual analysis that is required to
set up the simulator. You are now ready to move on to learning about
some of the technical issues involved.

Setting up the simulator

The tlearn neural network simulator has been programmed to run
on a variety of computing platforms including Macintoshes, Windows
and most Unix machines that run X-windows. Furthermore, we have
designed the user interface to look more or less identical across these
different platforms. So the details involved in setting up your simula-

tions will be more or less the same irrespective of the type of compu-
ter system you are using. Where differences do occur, and we promise

FIGURE 3.1 A single-layered perceptron for learning the Boolean function
AND.

FIGURE 3.2 Startup menu for tlearn.

Output node

Input nodes

a2

a0 a1

w20 w21

34 CHAPTER 3

that they will be only minor differences, we will point them out. The
description we give here is for the Macintosh version of the applica-
tion. For information on how to install tlearn on your computer sys-
tem, please refer to the instructions in Appendix A.

You start up tlearn on your computer in the same way as any
other application, such as double-clicking on the tlearn icon or
through a sequence of keyboard commands. We will assume that you
have done this. When tlearn has started up, your computer monitor
should display a set of menus like those depicted in Figure 3.2. These
menus are accessed in the standard fashion for your computer system.
For example, you may click on one of the menu items and hold down
the mouse button to display the options associated with that menu.

You begin the process of constructing a new network from the
Network menu. Select the Network menu and drag the mouse so that
the New Project option is highlighted as shown in Figure 3.3. When

you release the mouse button the New Project dialogue box is dis-

FIGURE 3.3 Select the New Project option from the Network menu.

 Learning to use the simulator 35

played as shown in Figure 3.4. In this dialogue box you can select a

directory or folder in which to save your project files and you can
name your project. In this case, call the project and since you are
building a network to learn Boolean AND. Then click on to
initiate the relevant files in your selected directory or folder. The dis-
play on your monitor should now resemble that depicted in Figure 3.5.
Notice that tlearn has created 3 different windows—and.cf,
and.data and and.teach. Each window will be used for entering
information relevant to a different aspect of the network architecture
or training environment:

• The and.cf file is used to define the number of nodes in a network and
the initial pattern of connectivity between the nodes before training
begins.

• The and.data file defines the input patterns to the network, how
many there are and the format by which they are represented in the file.

• The and.teach file defines the output patterns to the network, how
many there are and the format by which they are represented in the file.

By convention, tlearn requires that any simulation project possesses
these 3 files and expects them to possess the file extensions .cf,
.data and .teach. You can choose any name you like for the

FIGURE 3.4 The New Project dialogue box. Select a folder or directory in
which to save your current project and name the project. In this
case, name the project and.

36 CHAPTER 3

filename. For the current project, we have chosen the filename and.
However, all the files that belong to a project should have the same
filename. Project information is stored in a special file so that you can
activate previously created projects simply by activating (e.g., double-
clicking) that file. The filename identifies the project file. In this case,
tlearn has created a project file called and as well as the 3 required
files.

Now let us consider in detail what information must be stored in
the different files. It is your responsibility to enter this information.
For now, we will assume that you will use the simple file creation and
editing facilities that tlearn provides. However, you can create
these files in the text editor or word processor of your choice, just so
long as you remember to save the files in ASCII format.1 The informa-
tion required in the and.cf file is displayed in Figure 3.6. You
should enter this information exactly as displayed, honoring upper
case and lower case distinctions, spaces and colons. If you make a
mistake while entering the characters, you can use the arrow keys on

FIGURE 3.5 Startup files for a new tlearn project include .cf, .data and
.teach files. The .data and .teach files define the network’s
training environment. The .cf file defines the network architec-
ture.

 Learning to use the simulator 37

your keyboard or the mouse to navigate in the file. Use the “delete” or
“backspace” key to edit out any unwanted material. When you have
finished creating the file and you are sure there are no errors then save
the file to disk using the standard technique on your computer system.
Alternatively, you can use the Save command in the File menu of
tlearn as shown in Figure 3.7.

1. Most word processors introduce formatting information that involve control char-
acters like ^S which tlearn doesn’t understand. It is imperative that you save files
created by a word processor in ASCII format (also often referred to as “Text” format
in many word processors) otherwise tlearn may fail to run. Also notice that if you
create your .cf, .data and .teach files in another text editor, you will still have
to define the project in the New Project dialogue box in the Network menu.
Remember to use the same name for the project as you use for the filename in your
.cf, .data and .teach files so that tlearn knows which files to look for.

FIGURE 3.6 The and.cf file contains 3 sections: The NODES: section spec-
ifies the total number of units in the network and identifies which
nodes play the role of input and output. The CONNECTIONS: sec-
tion specifies how the units are connected to each other. The SPE-
CIAL: section provides information that determines the initial
value of the connection strengths and specifies the units whose
activation values are available for inspection.

38 CHAPTER 3

The Configuration (.cf) file

The .cf file is the key to setting up the simulator. This file describes
the configuration of the network. It must conform to a fairly rigid for-
mat, but in return offers considerable flexibility in architecture. We
shall now dissect the innards of the .cf file in some detail.

There are three sections to this file (see Figure 3.6). Each section
begins with a keyword in upper case, flush-left. The three section key-
words are NODES:, CONNECTIONS: and SPECIAL:. Note the colon.
Sections must be described in the above order.

NODES: This is the first line in the file. The second line specifies the
total number of nodes in the network as “nodes = #”. Inputs do not
count as nodes. The total number of inputs is specified in the third
line as “inputs = #”. The fourth line specifies the number of nodes
which are designated as outputs according to “outputs = #”.
Lastly, the output nodes are listed specifically by number (counting
the first node in the network as 1). The form of the specification is
“output nodes are <node-list>”. (If only a single output is
present one can write “output node is #” as we have done in the
and.cf file). Spaces are critical.

FIGURE 3.7 Saving the and.cf file from the tlearn File menu.

 Learning to use the simulator 39

CONNECTIONS: This is the first line of the next section. The line fol-

lowing this must specify the number of groups, as in “groups = #”.
All connections in a group are constrained to be of identical
strength—though in many cases “groups = 0” as in the and.cf
file. Following this, information about connections is given in the
form:

<node-list> from <node-list>

Dissecting the NODES: section of the and.cf file

Dissecting the CONNECTIONS: section of the and.cf file

Tells tlearn how many
units are in the network.
This does not include the
input units which are

Specifies the beginning of
the nodes section.

NODES:

nodes = 1

inputs = 2

outputs = 1

output node is 1

Tells tlearn how many input
units are in the network. Input
units are counted separately
from other units. Tells tlearn how many out-

put units are in the network.
Identifies the output unit. We
count units starting at 1. Since
there is only 1 non-input node in

Specifies the beginning of
the connections section.

CONNECTIONS:

groups = 0

1 from i1–i2

1 from 0

Tells tlearn how many
groups of connections are con-
strained to have the same value.
In the current network there are
no such constraints so groups

Indicates that node 1 (the out-
put unit—see nodes section)
receives input from the 2 input
units. Input units are counted
independently from other units

Node 0 is the bias unit which is
always on. So node 1 has a bias.

40 CHAPTER 3

A <node-list> is a comma-separated list of node numbers, with
dashes indicating that intermediate node numbers are included. A
<node-list> contains no spaces. Nodes are numbered counting
from 1. Inputs are likewise numbered counting from 1, but are desig-
nated as i1, i2, etc. Node 0 always outputs a 1 and serves as the
bias node. If biases are desired, connections must be specified from
node 0 to specific other nodes (not all nodes need be biased).

SPECIAL: This is the first line of the third and final section.
Optional lines can be used to specify whether some nodes are to be
linear (“linear = <node-list>”), which nodes are to be bipolar
(meaning their values range from -1 to +1 rather than 0 to +1 which is
the default “bipolar = <node-list>”), which nodes are selected
for special printout (“selected = <node-list>”), and the initial
weight limit on the random initialization of weights
(“weight_limit = #”). Again, spaces are critical.

This may seem an overly complicated procedure for defining a
network with just 2 input units and 1 output unit. You are right, it is!
However, you will see that this format enables you to define far more
complicated network architectures as well. So it is worth the effort to
invest time to make sure you understand how the .cf file works.

Dissecting the SPECIAL: section of the and.cf file

SPECIAL:

selected = 1

weight_limit = 1.00

Specifies the beginning of
the special section.

Tells tlearn which
units are to be selected
for special printout. In
this case, we select nodeTells tlearn how to initialize

the weights in the network. This
line will cause tlearn to set
the start weights (from the input
to the output and the bias to the
output) randomly in the range
±

 Learning to use the simulator 41

The Data (.data) file

The and.data file defines the input patterns which are presented to
tlearn. Enter the data as shown in Figure 3.8. Don’t forget to save
the file when you have finished.

The first line must either be distributed (the normal case) or
localist (when only a few numbers of many input lines are non-
zero). The next line is an integer specifying the number of input vec-
tors to follow. The remainder of the .data file consists of the input.
These may be input as integers or floating-point numbers.

In the (normal) distributed case, the input is a set of vectors.
Each vector contains i floating point numbers, where i is the number
of inputs to the network. Spaces between the numbers are critical. In
the localist case, the input is a set of <node-list>’s listing only
the numbers of those nodes whose values are to be set to one. Node
lists follow the conventions described in the .cf file.

The Teach (.teach) file

The .teach file is required whenever learning is to be performed.
Enter the data for the and.teach file as shown in Figure 3.9. Don’t
forget to save the file when you are finished. As with the .data file,
the first line must be either distributed (the normal case) or
localist (when only a few of many target values are nonzero). The
next line is an integer specifying the number of output vectors to fol-
low. The ordering of the output patterns matches the ordering of the
corresponding input patterns in the .data file. In the (normal) dis-
tributed case, each output vector contains o floating point or inte-
ger numbers, where o is the number of outputs in the network. An

FIGURE 3.8 The and.data file.

42 CHAPTER 3

asterisk (*) may be used in place of a floating point number to indi-
cate a “don't care” output. In the localist case, the input is a set of
<node-list>’s listing only the numbers of those nodes whose val-
ues are to be set to one. Node lists follow the conventions described in
the .cf file.

Checking the architecture

If you have typed in the information to the and.cf, and.data and
and.teach files correctly then you should experience no problems
running the simulation. However, tlearn offers a useful way to
check whether the and.cf file has been correctly specified. You can

Dissecting the and.data file

FIGURE 3.9 The and.teach file.

distributed

4

0 0

1 0

0 1

1 1

Specifies the manner of
coding of the input pat-
terns. The alternative
coding is localist.
See text for explanation.

Tells tlearn how many input
patterns to expect in the rest of

Defines the input patterns for
and. If the first line is set to dis-
tributed, each input pattern
consists of a vector with the same
number of elements as input units.
Each element of the vector can be
an integer or a floating point

 Learning to use the simulator 43

display a picture of your network architecture using the Network
Architecture option in the Displays menu. The architecture for
Boolean AND is shown in Figure 3.10. The buttons at the top of the
display enable you to adjust your view of the network. For example, it
is possible to view the network without the bias displayed simply by
clicking on the Bias button. Note, however, that the adjustments you
make to the display do not effect the contents of the network configu-
ration file. tlearn will not complain if there are any mistakes in the
training files (.data and .teach) when you display the network
architecture. An error message will be displayed when you attempt to
train the network, if there is a mistake in the syntax of your training
files. Needless to say, tlearn cannot identify incorrect entries in the
training set data. If you accidently enter the input pattern 0 1 instead
of 1 1, you will receive no notification. Check your network files care-
fully!

Running the simulation

Once you have specified the three input files and saved them to disc,
you are almost ready to run your first simulation. First, however, you
must specify a number of parameters for tlearn that will determine
the initial start state of the network as well as the learning rate and

Dissecting the and.teach file

distributed

4

0

0

0

1

Specifies the manner of coding
of the output patterns. The
alternative coding is local-

Defines the output patterns for
and. In this case coding is dis-
tributed so the outputs are
single integers corresponding to
the activations of the single output
unit. Output patterns are ordered
to correspond to the input pat-
terns in the .data file so the
third output pattern is the target

Tells tlearn how many
output patterns to expect in
the rest of the file.

44 CHAPTER 3

momentum. For a brief overview of the kind of parameters that you
can set in tlearn consult Figure 3.11. To activate this dialogue box
you need to select the Training options. . . option in the Network
menu. First, we indicate the number of training sweeps that the net-
work should perform before halting. A training sweep consists of a
single presentation of an input pattern causing activation to propagate
through the network and the appropriate weight adjustments to be car-
ried out. In Figure 3.11 the number of training sweeps has been set to
1000 which means that 1000 patterns are to be presented to the net-
work. The order in which patterns are presented to the network is
determined by the Train sequentially and Train randomly buttons.
Activate the Train sequentially button (by clicking it with the mouse)
to present patterns in the order in which they appear in the .data and
.teach files. Activate the Train randomly button to present patterns
in random order. In Figure 3.11 tlearn has been set to select pat-
terns at random.

The initial state of the network is determined by the weight values
assigned to the connections before training begins. Recall that the
.cf file specifies a weight_limit in the SPECIAL: section (see

FIGURE 3.10 The Network Architecture display. tlearn reads the informa-
tion in the and.cf file to construct this display. The user can cus-
tomize the network display using the buttons at the top of the
display. These changes do not effect the contents of the network
configuration file.

 Learning to use the simulator 45

Figure 3.6). Weights can be assigned according to a random seed indi-
cated by the number next to the Seed with: button. You can select any
number you like. The advantage of this approach is that a simulation
can be replicated using the same random seed—meaning that the ini-
tial start weights of the network will be identical and patterns will be
sampled in the same random order. Make sure that you activate the
Seed with: button if you wish to use this method. Alternatively, you
may wish to let the computer choose a random seed for you in which
case activate the Seed randomly button. Note that both of these ran-
dom seed procedures select a set of random start weights within the
limits specified by the weight_limit parameter in the .cf file. The
only difference between the procedures is that in one case you have
control over the random seed and in the other case you relinquish con-
trol to the computer. In Figure 3.11 we have specified a random seed
of 1. Make sure you choose the same random seed for purposes of this
demonstration.

The other parameters specified in Figure 3.11 include Learning
Rate: and Momentum: You have already met the learning rate param-
eter in Chapter 1. It determines how fast the weights are changed in
response to a given error signal. The momentum parameter has not
yet been properly introduced. For the moment, set these parameters to
the values specified in Figure 3.11, i.e., and . There are many

FIGURE 3.11 The Training Options dialogue box activated from the Network
menu. Here you specify many of the parameters for training the
network including the number of sweeps, learning rate, momen-
tum, the initial startup configuration of the weights and the man-
ner in which patterns are selected for training.

0.1 0.0

46 CHAPTER 3

other parameters that can be set through the Training options dialogue
box. For the time being, however, just click to accept the
current configuration and close the dialogue box.

Now you can start to train the network. You can do this from the
Network menu by choosing the option Train the network as shown in
Figure 3.13. Immediately, you start training the network the tlearn
Status display appears—see Figure 3.13 (a). The status display indi-
cates how many sweeps have been completed and provides the oppor-
tunity to abort training, dump the current state of the network in a
weights file and iconify the status display to clear the screen for other
tasks while tlearn runs in the background. The status display also
indicates when tlearn has completed the current round of training—
see Figure 3.13 (b).

Now that you’ve trained the network for 1000 sweeps, let’s see
what it’s learned. There are a variety of ways to determine whether the
network has solved the problem you have set it. We will examine two
methods here:

FIGURE 3.12 Use Train the network to begin a simulation. Alternatively, use
the keyboard shortcut a-T

 Learning to use the simulator 47

1. Examine the global error produced at the output nodes averaged
across patterns.

2. Examine the response of the network to individual input patterns.

Global error

For each input pattern, the network will produce an output response.
As we saw in Chapter 1 the error at the output can be calculated sim-
ply by subtracting the actual response from the desired or target
response. The value of this discrepancy can be either positive or nega-
tive—positive if the target is greater than the actual output and nega-
tive if the actual output is greater than the target output. We wish to
determine the global performance of the network across all four of the
input/output pairs that make up Boolean AND.

Let us define global error as the average error across the four pairs
at a given point in training. In fact, tlearn provides a slightly more
complicated measure of global error called the RMS or Root Mean
Square error. To determine the RMS error tlearn takes the square of

FIGURE 3.13 The tlearn Status display window indicates when the simulator is
occupied training the network and when it has completed its train-
ing cycle. During training it is possible to Iconify the status win-
dow and revert to another task (while training continues in the
background). Training can be terminated by clicking on the Abort
button. Weights files can be saved by Dumping Weights.

(a)

(b)

48 CHAPTER 3

the error for each pattern, calculates the average of the squared errors
for all the patterns and then returns the square root of this average.
Using the RMS error instead of a raw average prevents tlearn from
cancelling out positive and negative errors. The calculation can be
expressed more succinctly in mathematical notation as:

(EQ 3.1)

In Equation 3.1 the symbol indicates the number of input patterns
and is the vector of output activations produced by input pattern .
The number of elements in the vector corresponds to the number of
output nodes. Of course, in the current problem—Boolean AND—
there is only one output node so the vector contains only one ele-
ment. The vector specifies the desired or target activations for input
pattern .

tlearn keeps track of the RMS error throughout training. The easiest
way to observe how RMS error changes is through the Error Display.
Activate the Error Display from the Displays menu. An Error Display
for the simulation we’ve just run is shown in Figure 3.14. Error is
reported on the graph every 100 sweeps. The x-axis on the graph indi-
cates the number of sweeps and the y-axis the RMS error. If you prefer
error to be displayed by a continuous line then click on the Line but-
ton.

Notice that error decreases as training proceeds such that after
1000 sweeps RMS . What does this error level mean? It
indicates that the average output error is just . So the output is off
target by approximately averaged across the 4 patterns. It would
appear that the network has not solved the problem yet. In fact, this
level of error may reveal that the network has solved the AND prob-
lem. It all depends on how we define an acceptable level of error.
Unfortunately, it is not always easy to evaluate network performance
on the basis of global error alone. Although the network may have a

Exercise 3.2

• What value should take for Boolean AND in
Equation 3.1?

rms error

tk ok–()
2

k

∑
k

------------------------------=

k
ok k

ok

tk
k

k

error 0.35≈
0.35

0.35

 Learning to use the simulator 49

low RMS error, there is no guarantee that the network has categorized
all the input patterns correctly (see Exercise 3.3).

Pattern error

Recall that RMS error reflects the average error across the 4 input pat-
terns. It is difficult to know whether the error is uniformly distributed
across different patterns or whether some patterns have been learned
correctly while others remain incorrectly learned. In order to distin-
guish between these possibilities, we need to examine the output acti-

FIGURE 3.14 The error display for global error. The x-axis represents the
number of sweeps and the y-axis the RMS error. The error is
reported every 100 sweeps and is indicated by a dot. The dots can
be joined to form a line by clicking on the Line button.

Exercise 3.3

1. How many times has the network seen each input
pattern after 1000 sweeps through the training set?

2. How small must the RMS error be before we can say
the network has solved the problem?

50 CHAPTER 3

vations for individual patterns. tlearn provides several facilities for
viewing the activation values of individual nodes. We will consider
two of them.

The most accurate method for determining pattern output is to
present each input pattern to the network, just once, and observe the
resultant output node activations. The output activations can then be
compared with the teacher signal in the .teach file. Present each
input pattern to the network by selecting the Verify network has learned
from the Network menu. The tlearn status window will indicate that
it has conducted 4 sweeps (one for each training input) and that Verifi-
cation is Completed. At the same time a new window called Output
will open as shown in Figure 3.15. Output indicates that it has used

the file and.1000.wts as a specification of the state of the network
(we will examine the.wts file in more detail shortly) and that it has
used the and.data training patterns to verify network performance.
Output then displays output activations one pattern per row. Since
there is only one output node there will only be a single activation on
each row. You can compare the activation values in Figure 3.15 to the
target activations specified in your and.teach file.

A shortcut method exists for observing output activations for individ-
ual input patterns. This facility is accessed through the Node activa-

FIGURE 3.15 The Output activation window. The activation for each output
node is displayed one pattern per row. There is only one output
node so only one activation value is displayed. Activations are
based on the most recent state of the network as recorded in
and.1000.wts.

 Learning to use the simulator 51

tions option in the Displays menu. Activating this option will yield
the display in Figure 3.16. The Node Activations Display shows the

activations of the two input nodes and the output node. Activation lev-
els are indicated by white bordered squares. Large white squares indi-
cate high activations. Small white squares indicate low activations. A
grey square indicates an inactive node. In Figure 3.16 the two input
nodes are inactive—corresponding to the input pattern 0 0—and the
output node is only slightly active, i.e., more off than on. You can dis-
play node activations for the other three input patterns simply by
clicking on the Next Data Pattern button. tlearn will then display
activation values in the order they are listed in the training files.

Exercise 3.4

1. Has tlearn solved Boolean AND?

2. Calculate the exact value of the RMS error and
compare it to the value plotted in Figure 3.14.

FIGURE 3.16 The node activation display. Click on the First Data Pat-
tern button to view node activations when the first input pattern
is presented. The size of the white square indicates level of activa-
tion. Grey squares indicate zero activation. The current pattern
(input pattern 1 of 4) has 0 0 as its input and 0 (almost) as its out-
put. This is a correct response. Scroll through the other patterns by
clicking on Next Data Pattern.

52 CHAPTER 3

Examining the weights

Input activations are transmitted to other nodes along modifiable con-
nections. The performance of the network is determined by the
strength of the connections—also called their weight values. To
understand how the network accomplishes its task, it is important to
examine the weights in the network. tlearn offers several options
for displaying the weights in the network. The shortcut method uti-
lizes the Connection Weights option in the Display menu. The con-
nections weights display (shown in Figure 3.17) depicts the weight

values as white (positive) or black (negative) rectangles. The size of
the rectangle reflects the absolute size of the connection. In the litera-
ture, these displays are usually called “Hinton diagrams.” The array,
or matrix, of rectangles are organized in rows and columns. You read
Hinton diagrams in accordance with this row/column arrangement. All

FIGURE 3.17 The Connection Weights display uses a Hinton diagram to plot
the relative strength of each of the weights (including bias
weights) in the network. Black rectangles signify negative weights
and white rectangles signify positive weights. Weights are identi-
fied by their row and column in the Hinton diagram matrix (see
text for further explanation).

 Learning to use the simulator 53

the rectangles in the first column code the values of the connections
emanating from the bias node. The rectangles in the second column
code the connections emanating from the first input unit. As we read
across the columns we observe the connections emanating from higher
numbered nodes (as defined by the .cf file). The rows in each column
identify the destination node of the connection. Again, higher num-
bered rows indicate higher numbered destination nodes. In the current
example, there is only one node that receives inputs (the output node).
All the other nodes are input nodes themselves and so by definition
receive no incoming connections. The large black rectangle in the first
column refers to the value of the weight connecting the bias to the out-
put node. The smaller white rectangle in the second column codes the
connection from the first input node to the output node. The slightly
larger white rectangle in the third column codes the connection from
the second input node to the output node.

The Hinton diagram in Figure 3.17 gives us a fairly good idea as
to how the network has solved Boolean AND. Notice that the bias has a
strong negative connection to the output node while the two input
nodes have moderately sized positive connections to the output node.
This means that one active input node by itself cannot provide enough
activation to overcome the strong negative bias and turn the output
node on. However, two active input nodes together can overcome the
negative bias. This situation is exactly what we need to solve Boolean
AND: The output node only turns on if both input nodes are active.

Sometimes, we need a more accurate picture of the internal struc-
ture of the network. For example, we might need to know the exact
value of the weights in the network. tlearn keeps an up-to-date
record of the network’s state in a weights file. These files are saved on
the disk at regular intervals (which you, the user, can specify).
tlearn also saves a weights file at the end of each training session.
You will find the current weights file in the same folder as your
project files. The weights file should be called and.1000.wts. You
can Open this file from the File menu in tlearn. The contents of the
file are shown in Figure 3.18. The file lists all the connections in the
network grouped according to receiving node. In the and.cf file only

Exercise 3.5

• Why do you think the fourth column is empty?

54 CHAPTER 3

one receiving node is specified—the output node or node 1. Connec-
tions going into each node are listed from the bias node through the
input nodes to the higher numbered nodes as specified in the .cf file.
The first number in the and.1000.wts file (after the # TO NODE 1
line) represents the weight on the connections from the bias node to
the output node. The second number (0.896755) shows the connection
from the first input node to the output node. The third number shows
the connection from the second input node to the output node. The
final number (0.000000) shows the connection from the output node to
itself. Recall that this connection is non-existent—we are using a sim-
ple feedforward network here. Nevertheless, the format of the weights
file is defined such that all possible input connections from every
potential sending node are specified. With more complicated network
architectures you will find that this seemingly unnecessary complexity
has some saving graces!

FIGURE 3.18 The weight configuration stored after 1000 sweeps of training in
the file and.1000.wts. The file lists the connections to each
receiving node. For each receiving node, input connections are
listed starting with the bias, then the input nodes and all other
nodes in the network in ascending order as identified in the .cf
file.

Exercise 3.6

• Now that you know the precise configuration of the
network, calculate by hand output activations for
each input pattern and see if you can confirm the
network’s calculations as depicted in the Output
window (see Figure 3.15).

 Learning to use the simulator 55

Network training can be continued by selecting the Resume training
option on the Network menu. tlearn will automatically extend train-
ing by another 1000 sweeps and adjust the error display to accommo-
date the extra training sweeps. Try training the network for an extra
couple of thousand sweeps and observe whether the RMS error
decreases significantly. Then practice the techniques you have learned
in this section for evaluating performance and the state of the network.

The role of the start state

The network solved Boolean AND starting with a particular set of ran-
dom weights and biases. Now run the simulation again but with a dif-
ferent set of initial weights and biases. This is easy to do. Just use a
different random seed. Open up the Training Options dialogue box
and select a different random seed (say 2). When you issue the com-
mand Train the network, tlearn wipes out the learning that has
taken place in the network and provides a new set of random weights
determined by the random seed you have used. Training continues in
the usual fashion. You can resume training beyond the specified
number of sweeps using the Resume training option.

Start states can have a dramatic impact on the way the network
attempts to solve a problem and on the final solution it discovers.

Exercise 3.7

1. Train the network using a variety of different ran-
dom seeds. Does the network show the same pattern
of error for all the random start states?

2. Does the error always decrease from one point on
the error plot to the next?

3. If two simulations exhibit the same level of error at
the end of training, does this mean that the connec-
tions weights in the network are identical?

4. Does the size of the weight limit parameter (speci-
fied in the .cf file) influence the outcome of net-
work training? Try running a simulation with a large
weight limit such as .4.0

56 CHAPTER 3

Researchers often attempt to replicate their simulations using different
random seeds to determine the robustness or reliability of network
performance on a given type of problem. Training networks with dif-
ferent random seeds is like running subjects on experiments. You
repeat the experiment to determine the degree to which the outcome
depends upon the participating individual or other factors of interest.
Alternatively, running a simulation with different random seeds might
be likened to evaluating the fitness of different organisms to adapt to
an environmental niche. The initial state of the network corresponds
to the organism’s phenotype.

The role of learning rate

Recall that you specified the Learning rate parameter in the Training
options dialogue box to be . Now investigate the impact of the
learning rate for the network’s performance on Boolean AND. Learn-
ing rate determines the proportion of the error signal (or more accu-
rately) which is used to change the weights in the network. Large
learning rates lead to big weight changes. Small learning rates lead to
small weight changes (see Equation 1.5 on page 13). In order to exam-
ine the effect of learning rate on performance, you need to run the
simulation in such a fashion that learning rate is the only factor that
has been changed. In particular, you need to start the network off in
the same state as before, i.e., with the same set of random weights and
biases. Then you can compare the results of the new simulation with
your previous run. Again notice the similarity to running controlled
experiments. We know that the start state of the network can have a
dramatic effect on learning so we avoid confounding experimental
variables by using an identical start state.

Open the Training Options dialogue box and select a random seed
of . This ensures that the network starts off in an identical fashion to
previous runs we have observed. Next set the Learning rate parameter
to . Finally, make sure that you have selected the Train Randomly
button. Close the dialogue box and Train the network.

Generally, modelers use a small learning rate to avoid large weight
changes. Large weight changes made in response to one pattern can
disrupt changes made in response to other patterns so that learning is
continually undone on consecutive pattern presentations. In addition,
large weight changes can be counter-productive when the network is

0.1

δ

1

0.5

 Learning to use the simulator 57

close to a solution. The weights may end up in a configuration which
is further away from the optimal state than it was prior to the weight
change!

Logical Or

Boolean AND is solved relatively quickly by a single-layered percep-
tron across a fairly wide-range of learning conditions (start state,
learning rate, etc.). Now evaluate the network’s capacity to master
Boolean OR—the second of the Boolean functions listed in Table 3.1.

You can set up the files necessary for running an OR simulation by
opening the New project. . . option in the Network menu. Three files
will be opened by tlearn—or.cf, or.data and or.teach. Ini-
tially, they will be empty files. Configure these files to contain the
same information as the corresponding and files, except for the
or.teach in which the target patterns should be those indicated in
the output activations of the OR column in Table 3.1. If you wish, you
can just copy all the and files and rename them with their appropriate
or titles. When you open a New Project. . . entitled or, tlearn will
use the duplicate files you have created. You will then only need to
edit the or.teach file.

Activate the Error Display and then Train the network using the same
Training options. . . that you used for the initial run on Boolean AND

Exercise 3.8

• Do you notice any difference from the previous run
in the final solution that the network discovers?
What is the effect of changing the learning rate? Try
repeating this experiment with two or three other
values of the learning rate parameter.

Exercise 3.9

• What type of network architecture should you use
for Boolean OR?

58 CHAPTER 3

(see Figure 3.11). Remember to set the training options before you
attempt to train the network. Use a random seed of , a learning rate
of and select patterns to Train randomly. In this manner, we can
compare network performance on Boolean OR and AND directly. All
we’ve changed is the target output activations. Let’s evaluate network
performance after 1000 sweeps of training. The RMS error curve is
shown Figure 3.19. Compare this with the performance on Boolean

AND depicted in Figure 3.14. The error decreases faster and to a lower
level by 1000 sweeps. This suggests that the network might have
solved Boolean OR if we evaluate error in accordance with the “round-
ing-off” criterion (see Exercise 3.3 on page 63). However, as we saw
in the section on Pattern Error on page 49, the RMS error may pro-
vide a misleading picture of network performance. It is necessary to

Exercise 3.10

1. Before you set up the network and run the simula-
tion, can you predict how the network will attempt
to solve this problem?

2. What does the or.teach file look like?

FIGURE 3.19 Network performance over 1000 sweeps of training on Boolean
OR.

1
0.1

 Learning to use the simulator 59

examine the errors on individual patterns to be confident that the net-
work has indeed solved the problem.

Earlier in the chapter (see Exercise 3.4 on page 65), we used the
Verify network has learned option in the Network menu to obtain a
set of output activations for the network trained on Boolean AND. We
used a rounding-off method to compare output activations with the
target activations and thereby determined whether the network had
solved the problem. However, tlearn provides additional techniques
for evaluating the error on individual patterns. Select Testing
Options… in the Network menu. The dialogue box shown in
Figure 3.20 will appear. Testing Options… sets a variety of parame-

ters for evaluating network performance without further learning tak-
ing place when the Verify network has learned or Probe selected
nodes options in the Network menu is selected. Take some time to

FIGURE 3.20 The Testing Options… network dialogue box which is accessed
from the Network menu.

60 CHAPTER 3

browse through the options in this dialogue box and see if you can
guess their functions.

We want to test the network’s output for individual patterns so we
will eventually use the Verify network has learned option in the Net-
work menu. By default, this option tests the network’s response to the
input patterns in the training set using the current state of the weights
in the network. In Figure 3.20 you can see that the Weights file:
option is selected for the Most recent weights file, i.e., the current
state of the network. This is just the weights file or.1000.wts
which tlearn selects automatically. If you wanted you could select
another weights file by selecting the Earlier one: button and typing
the name of an appropriate weights file in the text box. Alternatively,
you can double-click on the text box to bring up a list of all the
weights files in your current folder. This is a useful aid to memory if
you can’t remember the names of your weights files but make sure you
select a weights file that is appropriate to your current network archi-
tecture. So far this isn’t a problem because we’ve always used net-
works with identical architectures. But once you start using networks
that vary in the number of connection weights, it will be crucial to
select the right type of weights files. tlearn will not complain that
you’ve chosen the wrong file. It will even produce output activations
when you Verify network has learned! Load your weights files care-
fully.

The second decision to make in the Testing Options… dialogue
box concerns the Testing set: Do you want to evaluate performance on
the patterns in the training set or the response of the network to an
entirely new set of patterns. The latter can be important for discover-
ing how the network generalizes (more of that in Chapter 6). For the
moment, we are interested in performance on the training set so select
the Training set button. Make sure that tlearn has selected the cor-
rect training set—in this case or.data.

Next set Test Sweeps: to Auto (one epoch). This tells tlearn to
present each training pattern to the network just once and in the order
specified in the .data file when we select the Verify network has
learned option. Finally, set all the other squareboxes at the bottom of
the dialogue box in Figure 3.20 as indicated. In particular, make sure
that the Calculate error box is on. This tells tlearn to display the
error for individual patterns when you choose the Verify network has
learned option. The Error Display used for the RMS error plot is also
used for this option.

 Learning to use the simulator 61

When you have selected the relevant options, close the Testing
options… dialogue box and select Verify network has learned. If all
is well, you should see an Error Display like that in Figure 3.21. Per-

formance on all patterns is within criterion though the error is least on
pattern 4 (1 1). You might like to train the network further (using the
Resume training command) to see how quickly the error reduces on
the other training patterns.

FIGURE 3.21 Error display for individual patterns in Boolean OR.

Exercise 3.11

• How did the network solve Boolean OR? Use the
techniques that we reviewed in Exercise 3.6 on
page 66 to answer this question. Is the network sen-
sitive to training with different random seeds?

62 CHAPTER 3

Exclusive Or

Create a new set of files for the EXCLUSIVE OR problem shown in
Table 3.1. Create the project file by selecting the New Project option
in the File menu. Call the project xor. If you have already copied the
files over from the or project to create xor.cf, xor.data and
xor.teach, all you need to do is edit the xor.teach file so that it
has the right outputs as specified in Table 3.1. Otherwise, you will
need to create the network files from scratch.

Once you have created the necessary files, set the training options
so that they conform to the parameters that you have used previously
for and and or. Now train the network for 1000 sweeps. Evaluate per-
formance on XOR.

You will discover that your network architecture has considerable dif-
ficulties solving XOR over a wide range of start states (random seeds)
and learning rates. In fact, a single-layered perceptron is unable to
solve XOR. The difficulty arises with the non-linearity inherent in the
Boolean mapping. In the next chapter we will examine the type of net-
work XOR architecture and training regime that permits the solution of
this problem.

Exercise 3.12

• Has the network solved XOR? If not, try Resume
training for a further 4000 sweeps. Does the net-
work solve the problem?

 Learning to use the simulator 63

Answers to exercises

Exercise 3.1

• The set of input patterns are identical for all the Boolean functions repre-
sented in Table 3.1. AND, OR and XOR differ in the set of responses to
the 4 inputs. For example, AND demands the response 0 to the input pat-
tern 0 1 but OR demands a response of 1 to the same input pattern.
Therefore, we must expect our network to exploit a different set of con-
nection weights depending upon which Boolean function it is attempting
to compute.

The output responses required for the Boolean functions AND and
OR increases with the amount of activity at the input. So the input 0 0
produces 0 output for AND and OR while the input 1 1 produces an out-
put of 1. In contrast, for the Boolean function XOR, there is a non-linear
relation between the amount of activity at the input and the activity at the
output—the inputs 0 0 and 1 1 both produce the output 0. In this respect,
XOR is the odd-one-out of these 3 Boolean functions. This fact will have
important implications for network training as we shall see in “Exclusive
Or” on page 62.

Exercise 3.2

• There are 4 different input patterns so the value of .

Exercise 3.3

1. There are 4 input patterns in the training environment so within 1000
sweeps the network will see each pattern 250 times. This is, in fact, only
an approximation since the simulator selects patterns at random from the
training set. However, for increasing numbers of training cycles, the per-
centage difference in selection of given patterns diminishes. In other
words, the patterns in the training set are selected with almost equal fre-
quency. For the statistically minded reader, patterns are selected from the

k 4=

64 CHAPTER 3

training set with replacement. You can force the network to select ran-
domly every pattern in each training epoch by deactivating the With
replacement check box in the enlarged Training options dialogue
box. Click on the more button to reveal a new universe of training
options!

2. The answer to this question may seem obvious: The network has solved
the problem when the RMS error has been reduced to zero. However,
there are several complications which mitigate against this solution.
First, recall that the activation function of the output unit is the sigmoid
function defined in Equation 1.2 and depicted graphically in Figure 1.3
on page 5. The net input to the node determines the node’s activation.
You can observe in Figure 1.3 that the activation curve never quite
reaches nor reduces to . In fact, to achieve these values the net
input to the node would need to be (infinity) respectively. Nodes
never receive input so there will always be a residual finite error.
The question then arises as to what level of error is acceptable.

There is no single correct answer. For example, you might suggest
that all outputs should be within of their target. So if the target is
then should be considered incorrect and if the target is
then should be considered incorrect. However, these crite-
ria have been set in an arbitrary fashion. Why not choose a criterion of

 rather than ? An alternative solution would be to round off the
activation values. Activations closest to are judged to be correct if
the target is . Activations closest to are judged to be correct if the
target is . In effect, this alternative sets the criterion to . To
repeat, there is no right answer in setting the error criterion. Many
researchers accept a rounding off procedure. Others set more stringent
demands. It can be useful therefore when evaluating the performance of
the network to determine how different values of the error criterion
effect the picture of performance.

Let us assume for the time being that we use rounding off to deter-
mine whether the output is correct or incorrect. We want to know what
level of global RMS error guarantees that all the patterns have been
learned to criterion. Consider the case where all patterns are off their
targets, i.e. . Substituting in Equation 3.1 gives an overall
RMS error of 0.5:

(EQ 3.2)

1.0 0.0
∞±

∞±

0.1 0
outputs 0.1> 1
outputs 0.9<

0.2 0.1
1.0

1.0 0.0
0.0 0.5

0.5
t o– 0.5≤

rms error
0.52 0.52 0.52 0.52+ + +

4
-- 0.5= =

 Learning to use the simulator 65

However, it is also possible to observe a RMS in which
some of the patterns are still categorized incorrectly. For example, errors
could be , , and to yield an RMS error of . So we
need a more conservative error level to guarantee that all the patterns are
correct. We can be confident that all the patterns are within criterion
when only one pattern is contributing substantially to the error. This
means that a maximum

RMS

guarantees that all the patterns have been categorized correctly. Of
course, this value holds only for binary targets to 4 training inputs. Dif-
ferent levels of global error will be appropriate for other problems.

Exercise 3.4

1. If we use a rounding-off method to evaluate network performance then
we get the output values indicated in Table 3.2. The exact output values
are indicated in the Output column and their rounded values in the

Rounded Off column. The Target scores match the rounded values
exactly. So by this error criterion, tlearn has solved Boolean AND.

2. The exact RMS error is calculated according to Equation 3.1 (see
page 48). In Table 3.2 the Squared Error for each input pattern is calcu-
lated by squaring the difference between the output and target values.
The RMS error is just the square root of the average of all the squared

TABLE 3.2 Activation values and errors in Boolean AND.

Input Output
Rounded

Off Target
 Squared

Error

0 0 0.147 0 0 0.022

1 0 0.297 0 0 0.088

0 1 0.334 0 0 0.112

1 1 0.552 1 1 0.201

RMS Error 0.323

error 0.5≤

0.6 0.6 0.1 0.1 0.43

error
0.52()

4
--------------≤ 0.25=

66 CHAPTER 3

errors, i.e., . Notice this error score is identical to the error plotted
by tlearn in Figure 3.14 after 1000 sweeps of training. This should
come as no surprise. The two error scores should be identical!

Exercise 3.5

• The fourth column codes the connection from the fourth node in the net-
work to the output unit. In this case, the fourth node is just the output
node itself. The first three nodes were the bias and the two input nodes.
So the fourth column depicts the connection between the output node
and itself—a recurrent connection. The network we are currently exam-
ining is a feedforward network. There are no recurrent connections so
the fourth column is empty.

Exercise 3.6

• To calculate the activation of the output node for each input pattern we
need to find the sum of the weighted input activations and use the sum as
the input to the logistic activation function (see Exercise 1.1 on page 8).
We’ll display these calculations in table format—one section of the table

TABLE 3.3 Calculating output node activations

Input
Activation

Connection
Strength

Weighted
Activations

Sum of Weighted
Activations

Logistic of
Net Input

P
at

te
rn

 1 Bias 1 -1.756069 -1.756069

-1.756069 0.147Input One 0 0.896755 0

Input Two 0 1.067833 0

P
at

te
rn

 2 Bias 1 -1.756069 -1.756069

-0.859314 0.297Input One 1 0.896755 0.896755

Input Two 0 1.067833 0

P
at

te
rn

 3 Bias 1 -1.756069 -1.756069

-0.688236 0.334Input One 0 0.896755 0

Input Two 1 1.067833 1.067833

0.323

 Learning to use the simulator 67

for each input pattern in Table 3.3. The actual output from the network is
the number listed in the column entitled “Logistic of Net Input.” These
numbers match the output activations in Figure 3.15 exactly. Notice how
the bias node effectively keeps the output node switched off (closer to 0
than 1) for the first 3 input patterns.

Exercise 3.7

1. Different random seeds result in different initial configurations of the
connection weights in the network. So the presentation of training pat-
terns to the network will result in different output activations for each
random seed. This means that at the beginning of training different
errors will be observed and this will, in turn, affect the way the weights
are changed. In general, the error profile will be different for each ran-
dom seed you train the network on. However, remember that each input
pattern is trained on an associated target pattern. As the error on the out-
put diminishes, the changes made to the weights in the network will
diminish. The error then will change more slowly. In other words, differ-
ent random seeds are likely to produce considerable variation in the error
profile during the early stages of training but will show similar error pro-
files later in training when the error has been reduced. The error profile
for running the network on two random seeds (1 and 6) are shown in
Figure 3.22.

2. Although error generally decreases gradually during training, it need not
do so in a monotonic fashion. For example, the error curve in
Figure 3.22 (Seed 1) temporarily rises around the 400 sweep mark. This
may seem odd given that the learning algorithm is continually attempt-
ing to reduce the error. There are several possible causes for U-shapes in
our error curve. The less interesting reason is that the patterns most

P
at

te
rn

 4 Bias 1 -1.756069 -1.756069

0.208519 0.552Input One 1 0.896755 0.896755

Input Two 1 1.067833 1.067833

TABLE 3.3 Calculating output node activations

Input
Activation

Connection
Strength

Weighted
Activations

Sum of Weighted
Activations

Logistic of
Net Input

68 CHAPTER 3

recently sampled from the training set happen to have a large error asso-
ciated with them. In other words, the reported error need not necessarily
reflect the average RMS error for the 4 different training patterns—only
a couple of them may have been selected for presentation to the network
and those patterns may happen to have a large error.

A more interesting cause of the increase in the error is interference
between different training patterns on the connection weights in the net-

FIGURE 3.22 The error profiles for running Boolean AND on two different
random seeds (1 and 6). Note that the final levels of error are very
similar (about 0.35) but the trajectory of the error profiles are
quite different.

Seed 1

Seed 6

 Learning to use the simulator 69

work. Consider a single input pattern. It is supposed to produce a spe-
cific output. There exists a configuration of connections in the network
that will permit this. However, the network is also supposed to produce
specific outputs for the other input patterns using a single set of connec-
tions weights. It is by no means obvious that the configuration of con-
nections weights used for one pattern will be appropriate for the other
patterns. If subsequent training patterns are not compatible with earlier
ones, then further training will lead to changes in connections that miti-
gate against successful performance on the original pattern. Often the
average error across all the patterns in the network will still decrease
despite the increase in error on one of the patterns. However, sometimes
the interference can be substantial and the average error may in fact
increase.

3. Different networks can exhibit the same level of error for a given prob-
lem but need not arrive at those errors by the same route. In other words,
the weights can look quite different even though they produce the same
answer. For example, consider the weights files after 1000 sweeps of
training for the two error curves in Figure 3.22. These are shown in
Figure 3.23. The bias node has a stronger inhibitory effect in the “Seed

6” simulation and the relative strengths of the connections from the input
nodes to the output node are reversed. In general, there will be many
solutions (configurations of the connection weights) to a problem. The

FIGURE 3.23 Two weights files for 1000 sweeps of training on Boolean AND.
The final error is approximately the same but the weights are quite
different. The bias node has a stronger inhibitory effect in the
“Seed 6” simulation and the relative strengths of the connections
from the input nodes to the output node are reversed.

Seed 1 Seed 6

70 CHAPTER 3

solution that the network finds will depend on the initial start state, the
number of times it sees a particular pattern and the order in which it sees
different patterns.

4. Recall that the weight limit parameter in the .cf file determines the
range of weight values that are randomly assigned to the connections in
the network when it is initialized. If the weight limit is set to , then
all the connections in the network will be set to values in the range .
In other words, some of the connections can be randomly set to be
strongly excitatory () or strongly inhibitory (). We have already
seen that the network’s solution to Boolean AND is to build a strong
inhibitory bias to the output node and moderate excitatory connections
from the input nodes. If the initial weight assigned to the bias is strongly
excitatory, the learning algorithm has more work to do to change it into a
strong negative value. Similar difficulties will be encountered if the other
two connections in the network have inappropriately large values. So a
large weight limit has the potential to slow down learning in the network.
Conversely, learning can sometimes be accelerated if the the bias node is
born with a strong inhibitory connection to the output node. Time to find
a solution would then depend on the value of the other connections in the
network.

The use of a large weight limit can create other learning problems.
Recall from Equation 1.5 on page 13 that the changes made to a weight
are proportional to the value calculated for the associated target unit.

 itself is determined by the error on the output unit multiplied by the
first derivative of the unit’s activation function (see Equation 1.3). The
first derivative of the activation function is simply the slope of the activa-
tion curve shown in Figure 1.3 on page 5. For large positive net input the
output activation of a sigmoid unit is at its maximum, i.e., . However,
the slope of the curve is flat. In other words, the value of the derivative is
close to . Similarly, with large negative net input the slope of the
curve is flat so its derivative is close to . When the derivatives are
small, Equation 1.3 forces the s to be small and so the weight changes
will be small. In summary, extreme values of net input (positive or nega-
tive) lead to small weight changes. In effect, the units become saturated
with input and find it difficult to learn. We will see later that this also has
some beneficial side-effects.

Now a large weight limit can yield strong initial connections. Strong
connections can yield extreme values of net input which lead to small
weight changes. So large weight limits can slow down learning. Gener-

4.0
2.0±

2.0 2.0–

δ
δ

1.0

0.0
0.0

δ

 Learning to use the simulator 71

ally, connectionist modelers keep the initial weights small so they are not
over-committed at the beginning of learning. A weight limit of , i.e.,
a range of seems to work quite well. This tends to keep the sig-
moid units within their most sensitive range for learning.

Exercise 3.8

• Sometimes a higher learning rate will give you faster learning. The error
curve with learning rate set to in the Boolean AND problem is
shown in Figure 3.24. In this case, learning benefits from a higher learn-

ing rate. For example, the average error after 1000 sweeps is approxi-
mately . With a learning rate of the average error after 1000
sweeps was closer to (see Figure 3.22).

However, higher learning rate does not always lead to faster learning
for all the patterns in the training set. We saw in Exercise 3.7 that input

FIGURE 3.24 The error curve for Boolean AND with a random seed of 1 and a
learning rate of 0.5. Learning is faster with the higher learning
rate—compare with Figure 3.22.

1.0
0.5±

0.5

0.2 0.1
0.35

72 CHAPTER 3

patterns in the training set can interfere with each other. If the learning
rate is high, the likelihood of interference occurring is enhanced. The
weight changes made for a single pattern presentation can have a detri-
mental effect on earlier training. Normally, it is safer to train the network
with the learning rate parameter set to a small value unless there is good
reason to believe that interference between patterns is likely to be mini-
mal. Can you think why a higher learning rate seems to help in the
Boolean AND problem?

Exercise 3.9

• You need a network that takes two inputs and produces a single output
activation, i.e., two input nodes and a single output node. For good meas-
ure include a bias node. We will investigate its role in a later section.

Exercise 3.10

1. In Boolean AND the bias played an important role in keeping the output
node switched off for all the input patterns except for 1 1. In Boolean OR

the output unit should be switched on for all patterns except the first—0
0. So we would expect the bias to play a different role in the network for
this problem.

FIGURE 3.25 The or.teach file.

 Learning to use the simulator 73

2. The or.teach file is shown in Figure 3.25. All output targets are set
to 1 except the first (0) which codes the target for the input 0 0. The other
or files are identical with their and counterparts since the input pat-
terns and network architecture are identical.

Exercise 3.11

• The weights file gives the best clue as to how the network has solved
Boolean OR. Open the weights file or.1000.wts (or the most
recently saved weights file) from the File menu. The weights file after
1000 sweeps with a random seed of 1 is shown in Figure 3.26. Notice

that the connections from the input nodes are large and positive (
and respectively) which means that activity at either or both of the
input nodes will tend to turn the output node on. The connection from
the bias is negative but too small to counteract the contributions from
active input nodes. In this example, the bias ensures that the output node
is switched off when neither of the input nodes are active. Remember
that the activation function for the output node varies continuously
between 1 and 0 according to the logistic of the net input to the node (see
Figure 1.3 on page 5). Net input of 0.0 to the output node produces an
activation of 0.5 so a negative input is needed to switch off the output
node when both input nodes are dormant (0 0). The mildly negative bias

FIGURE 3.26 The or.1000.wts file. Note the small negative bias connection
but relatively large positive connections from the input nodes.

1.48
1.44

74 CHAPTER 3

connection fulfils this function. However, the absolute size of the bias
connection must remain smaller than either of the other two weights so
that a single active input node can switch on the output node.

Exercise 3.12

• Given the network architecture that you have employed, the network will
fail to solve XOR. Correct responses may be produced for some of the
input patterns. With a random seed of 1 the network fails to produce cor-
rect responses for any of the patterns after 5000 sweeps of training. Try a
variety of random seeds and learning rates. You will discover that the
network manages to get some of the responses correct but never all of
them at the same time.

