Learning internal
representations

Introduction

In the previous chapter, you trained a single-layered perceptron on the
problems AND and OR using the deltarule. This architecture wasinca-
pable of learning the problem XoRr (see Table 3.1 on page 31). To
train a network on XoR you need a multi-layered perceptron like the
one shown in Figure 4.1. These networks contain a layer of hidden

Input Hidden
Output

FIGURE 4.1 A simple multi-layered perceptron architecture for learning the
Boolean function XOR

units that form “internal representations” of the input patterns. Con-
nections propagate activity forward from the input nodes to the hidden
nodes and from the hidden nodes to the output node. There are no
connections between nodes within a layer or feedback connections to
nodes in previous layers. Hence, network architectures of this type are
often referred to as feedforward networks. During training, error is
assigned to the hidden units by back propagating the error from the
output. The error on the output and hidden unitsis used to change the

76 CHAPTER 4

weights on the second and first layer of connections respectively.
Before continuing with the exercises in this chapter make sure that
you are familiar with the exact procedure by which backpropagation
adapts the weights in a network in response to an error signal. See
“Learning” on page 10. You should also have completed Exercise 1.2
(c) on page 14.

Networ k configuration

Start up tlearn and Open aNew Project called xor. tlearn opens
three new windows called xor.cf, xor.data and xor.teach.
Usethe xor. cf file to create a network with the same architecture as
that shown in Figure 4.1.

Exercise 4.1

e What are the contents of the three files?

Once you are confident that you have specified correctly all the nec-
essary files (check your files with the answers to Exercise 4.1 on
page 89) open the Training Options... dialogue box. Set the Learning
rate parameter to 0.3 and the Momentum parameter to 0.9. Select a
Random seed of 5 and set tlearn to Train randomly for 4000
sweeps.

Training the network

When you have specified all these training options open the Error
Display and Train the network. If you have set all the training options
as suggested, then you should observe an error display identical to
that depicted in Figure 4.2. Check your training options if you do not
observe this learning curve!

The error curve shows a sharp drop around the 2000 sweep mark.
What has happened? First, let us examine the output activations for
each of the input patterns after 4000 sweeps. The easy way to do this
isto use the Verify network has learned option in the Network menu.
The output from the network is shown in Figure 4.3. Again, if you do
not observe these values in your own simulation, check that you have
set the options in the Testing options... dialogue box correctly (see

Learning internal representations 77

SO0=—————— Error Display
@ Line O Points

0.a00 -

0400 -

0200 -

0.0ao0 L L L
0 sweeps 1000 2000 000 4000

[l -
FIGURE 4.2 An error curve for a multi-layered perceptron trained on the XOR
problem.

S[=————— Mutput EEI
Output activations ﬁ -
using 1xor . 4000.wts and lxor.data (Training Set) 3
0.026 3
0.972 g
.97z .
0.038 5
= g
7 &l =]

FIGURE 4.3 Output activations from multi-layered perceptron after training on
Boolean X OR for 4000 sweeps.

Figure 3.20 on page 60 and accompanying text for instructions). Now
consult the xor.teach file for the target activation values. The
teacher signals for the four input patterns are 0, 1, 1, 0 respectively.
So the network has done very well at solving this problem. (Recall
that we cannot expect the network to achieve exact matches to the tar-
get values—see Exercise 3.3 on page 63).

78 CHAPTER 4

Exercise 4.2

e Can wetell from the error curve in Figure 4.2 if the
network has solved X orR?

But why is there a sudden drop in error around the 2000 sweep mark?
To answer this question, it would be useful to examine output activa-
tions prior to this point in training. We can achieve this by saving
weight files during training of the network and then testing network
output with these weight files instead of the network’s final (mature)
state.

Testing at different pointsin training

Open the Training options... dialogue box in the Network menu.
Notice the more... button in the bottom left-hand corner of the dia-
logue box. Click on this button. The dialogue box expands to offer a
wider range of training options as shown in Figure 4.4. We won't

"#or" run 1 of 1

Training Sweeps: |gHl] Learning Rate:|{0.3000
Init bias offset:|D.0000 Momentum:|0.9000

@seedwitn:[5 | Logerrorevery[100 |sweeps

(seed Randomly] Dump weights every
O Train sequentially [Load weights File:| |

® Train randomly .
Halt if RMS error falls below (0,
B with replacement 0.0000

[Back prop thru time u.l/Elcupies

™ Use & log RMS error]
() Use & log H-entropy Update weights every l:lsmeeps

2 Use H-ent; log RMS O Teacher forcing [JUse reset file

[prew | Ment] [Cancel | I 0K I

]

sweeps

FIGURE 4.4 The Training options... dialogue box expanded to reveal the full
range of training options.

Learning internal representations 79

digress at this point to consider all the available options. For current
purposes, the Dump weights option is of interest. Check this box and
set the weights to be dumped every 500 sweeps. Leave all the other
options as they are. Close the dialogue box and Train the network
again. If you still have the Error display open, you should observe an
identical error curve unfold. tlearn has performed an exact replica-
tion of the previous simulation using the same random seed (initial
weight configuration) and same randomized order of pattern presenta-
tion. However, tlearn has saved weight files every 500 sweeps.
Since the network has been trained for 4000 sweeps, 8 weight files
will have been saved.

Next, open the Testing options... dialogue box and select the Ear-
lier one: button. Click in the box to the right of the button to activate
the dialogue box. Choose the xor.1501.wts file. Close the dia-
logue box and Verify the network has learned. tlearn will now dis-
play the output activations for the four input patterns after it has been
trained for 1501 sweeps. By resetting the weights file in the Testing
Options... dialogue box and Verifying the network has learned, you
can determine output activations at any point in training. Figure 4.5

S=———=— Output

using =or. 1001.wts and =or.data (Training Setl
0.185
0.81z2
o.812
.82z
Output activations
using =or. 1501, wts and xor.data (Training Setl
0.054
.72z
.72z
0.724
Output activations
using =or 2001.wts and xor.data (Training Setl
0. 066
o.8va
0.&838
0.249

T =

FIGURE 4.5 Sample output activations after 1001, 1501 and 2001 sweeps of train-
ing on XOR.

shows the output activations after 1001, 1501 and 2001 sweeps

80 CHAPTER 4

respectively. Using the rounding off criterion, we observe that the net-
work has learned the first three patterns correctly already after 1001
sweeps. Overall, however, the network is behaving as though it was
supposed to learn Boolean OR, i.e., it categorizes the fourth input pat-
tern in the same fashion as the second and third input patterns. By the
1501 sweep mark the output activities on the first and fourth patterns
have been reduced—a move in the right direction. However, the
reduction in error on these two patterns has been achieved (appar-
ently) at the expense of the second and third patterns. Notice that the
output activities for the second and third patterns have reduced
instead of increasing. The network is still behaving like Boolean OR.
Finally, after 2001 sweeps of training the output activity for the fourth
pattern has decreased considerably and the activity for the second and
third patterns has increased again. Activity patterns have begun to
move in the right direction and using the rounding off criterion, the
network has now solved XoR. Notice that the period of training
between 1501 and 2001 sweeps corresponds to the sudden drop in glo-
bal error depicted in Figure 4.2. What has happened in the network to
bring about this change?

Examining the weight matrix

The response of a network to a given input is determined entirely by
the pattern of connections in the network and activation functions of
the nodes in the network. We know what the activation functions
are—tlearn specifies them in advance. However, the network organ-
izes its own pattern of connections—the weight matrix. tlearn pos-
sesses a useful facility for examining weight matrices—the
Connection Weights option in the Display menu. Open this display.
Aswe saw in Figure 3.17 on page 52, Connection Weights displays a
Hinton diagram of the weight matrix. In this case, we want to examine
the weights at different points in training. Open the Testing
Options... dialogue box and make sure that the Earlier one: button is
set to xor.2001.wts—double click on the box to activate the dia-
logue box permitting you to select the xor.2001.wts file. Close the
Testing Options... dialogue box and select the Verify network has
learned option. tlearn will display the output activations again and

Learning internal representations 81

update Connection Weights to display a Hinton diagram for the state
of the network after 2001 sweeps. You should obtain a Hinton diagram
identical to that depicted in Figure 4.6.

[I=————— Connection Weights Diagram =———— =
[Update Every: ® 1 (5 10) sweeps @ epochs 2

b i iz 1 2 3 = -
P_I- -

FIGURE 4.6 Connection Weights displays a Hinton diagram of the weight
matrix for XOR after 2001 sweeps. Rows represent receiving nodes
and columns represent sending nodes. White squares represent posi-
tive weights. Black squares stand for negative weights. The size of the
square reflects the absol ute value of the connection.

Recall that the Hinton diagram organizes connections by rows and
columns. The row identifies the receiving unit and the column identi-
fies the sending unit. So row 1 in Figure 4.6 identifies all the connec-
tions going into node 1 (the first hidden node). There are three
connections—from the bias and the two input nodes. There are no
feedback connections from the first hidden node to itself or from the
second hidden node or output node to the first hidden node. Therefore,
these areas in the Hinton diagram are left blank. We observe in
Figure 4.6 that the first hidden node has a mildly positive connection
from the bias node, so it is disposed to become active in the absence
of any other input. In contrast, the first hidden node receives strong
inhibitory connections from both input nodes. Thus, any activation
coming up the input lines will tend to turn the first hidden node off.

82 CHAPTER 4

Exercise 4.3

e Draw adiagram of the network after 2001 sweeps
depicting al connections (including the bias) as pos-
itive or negative.

In alater section we will examine how this network connectivity man-
ages to provide a solution to the Xor problem. For the time being
however we are concerned with the changes that occur in the network
between 1501 and 2001 sweeps that enable the network to solve the
problem. Now examine the weight matrix after 1501 sweeps of train-
ing. Open the Testing Options... dialogue box and set the Earlier
one: option to xor.1501.wts. Close the dialogue box and Verify
the Network has learned. The Connection Weights Diagram will be
updated to depict a Hinton diagram for the weight matrix at 1501
sweeps as shown in Figure 4.7.

SO=—————— Connection Weights Diagram
[<] Update Every: ® 1 35210) sweeps ® epochs

|
I

b i1 iz 1 2 3 |_
(2] B

FIGURE 4.7 Connection Weights displays a Hinton diagram of the weight matrix
for XOR after 1501 sweeps.

How does the weight matrix shown in Figure 4.7 change into the
weight matrix shown in Figure 4.6? The most significant changes take
place in the connections from the bias node to the hidden and output
nodes, and from the second hidden node (node 2) to the output node

Learning internal representations 83

(node 3). The remaining connections do not change much. In particu-
lar, the bias connections to the hidden nodes grow in strength to pro-
vide positive excitation to their target nodes while the bias connection
to the output node switches to inhibit its activation. The connection
from the second hidden node to the output node increases its capacity
to excite the output node. These changes take place in unison, as they
must if they are to permit the fourth input pattern to be classified cor-
rectly.

Exercise 4.4

e Draw adiagram of the network depicting the exact
values of the connections (to one decimal place) at
1501 and 2001 sweeps. Can you see how the net-
work fails to solve the Xor at 1501 sweeps but
passes the test at 2001 sweeps? Hint: You will need
to examine the weight files themselves as shown in
Figure 3.26 on page 73.

Hinton diagrams provide a convenient overview of the connectivity in
the network. You can even request that tlearn displays changes in
the weight matrix on-line. Try it. Make sure that the Connection
Weights diagram is displayed and then simply Train the Network. Ini-
tially, you will observe substantial swings in the weight values in the
network. However, weight values will gradually stabilize. If you have
the Error Display active then you can also observe how changes in the
global Rwms error coincide with changes in the weight matrix. The next
stage in analyzing network performance involves examining hidden
node activations.

Hidden node representations

The activations of the hidden nodes provide an important clue as to
how the network has solved XoR. In general, we may consider the hid-
den unit activations associated with an input pattern to be the net-
work’s internal representation of that pattern. We shall discover that
patterns that look quite dissimilar at the input layer can be almost
identical when we view their activations at the hidden unit level. Con-
versely, patterns that are similar at the input layer can end up looking
quite different at the hidden layer. Hidden units and the connections

84 CHAPTER 4

feeding into them have the capacity to transform the similarity rela-
tions of the patterns in the input space so that the nature of the prob-
lem itself is changed.

We shall investigate several ways of examining these activities in
the network. To begin with open the Testing Options... dialogue box
and set the Earlier one: option to xor.2001.wts. Close the dia-
logue box and open the Node Activation display in the Display menu.
Click on the [First Data Pattern] button. The display should update
to reveal the display in Figure 4.8. This represents the pattern of

[I=————— Wode Activations Display =4
[firsl nis Palipra] [Nent Data Pattern| '

pattem: 114 E

FIGURE 4.8 Node Activation Display depicts the activation of al nodes in the
network (excluding the bias). The level of activation of each node
determines the size of the white square. A grey node indicates an
inactive node. In the current display, the input and output nodes are
inactive and the hidden nodes are active.

activity in the network when the first input pattern 0 O is presented to
the network. The current pattern is identified in the bottom left-hand
corner of the display. All the nodes in the network are represented
(except for the bias node). The level of activation of a node is repre-
sented by the size of the white square—large squares reflect high
activity. Grey squares indicate dormant nodes. Input nodes are dis-
played at the bottom of the diagram. Subsequent layers in the network

Learning internal representations 85

are depicted at higher levels in the display. Hence, in Figure 4.8, the
input nodes are dormant, the output node is dormant (as it should be
for correct performance) and the hidden nodes are active. By clicking
on the [Next Data Pattern| button, you can display node responses to
all of the four input patterns.

Exercise 4.5

e Examine the activation of the hidden nodes in
response to the different input patterns. Can you see
how the network is solving the non-linear XOR
problem? Why is it that the first input pattern pro-
duces highly active hidden nodes but a dormant out-
put node?

Just as it is possible to determine the exact values of the connection
weights in the network, it is also possible to determine the exact acti-
vations of the hidden nodes. Open the xor.c£ file using the Open
option from the File menu (if it isn’t already open). Observe that in
the SPECIAL: section there is a line with the instructions:
selected = 1-3. This line tells tlearn to output the activations of
the selected nodes whenever the Probe Selected Nodes option from
the Network menu is chosen. Make sure that the Testing Options... is
still set to use the weightsfile xor.2001.wts and then select Probe
Selected Nodes. tlearn will display activations for nodes 1-3 for
the four input patterns as shown in Figure 4.9. Notice that the third

SI==——— lutput =—""——1 :::::
Mode 1, 2 & 3 activations il |
using =or, 2001 . wts and =or.data CcTraining Set? :-.::
0,845 0.97a 0. 066
0.oo7 0.757 0.a7a]
0.o07 0,622 0,222]
0,000 .13z 0.2449 i
! i '::::
7 <a (i (=] o

FIGURE 4.9 Node activations in the Output window for nodes 1-3 in a network
trained on X OR for 2001 sweeps. The output is produced by selecting
the Probe Selected Nodes option in the Network menu. Nodes
are selected inthe SPECIAL: section of thexor . c£ file.

86 CHAPTER 4

column of activation values is identical with the activations displayed
in Figure 4.5 for 2001 sweeps. The first two columnsin Figure 4.9 list
the activations of the two hidden nodes for the four input patterns.
These values give the precise values used to calculate the Node Acti-
vations display in Figure 4.8.

Exercise 4.6

1. Usethe weight matrix from xor.2001.wts (see
Exercise 4.4) to confirm that the activation values
listed in Figure 4.9 are correct. Hint: You will need
to refer to Exercise 1.1 on page 8 to convert the net
input to a node into its activation value.

2. Havewe explained the sudden decrease in the global
error score observed in Figure 4.2?

Role of learning rate and momentum

The learning rate parameter n (see Equation 1.4 on page 12) deter-
mines what proportion of the error derivative is used to make changes
to the weights in the network. In the Training Options... dialogue box
you are also given the option of specifying the value of another
parameter called momentum (). The momentum parameter provides
another means for manipulating the weights but based on the changes
that were made on the previous learning trial. The value of the
momentum parameter determines what proportion of the weight
changes from the previous learning trial will be used on the current
learning trial. Mathematically, we can express this notion as

JE
Aw, = —na—w+ UAW, _4 (EQ4.1)

which reads: “The change in the weight at time t is equal to the learn-
ing rate n multiplied by the negative slope of the error gradient with
respect to the weight, plus the momentum p multiplied by the size of
the weight change on the previous learning trial.” Thus, if the weight
change on the previous learning trial is large and pu is large, the
weight change on the current learning trial will also be large even if
the derivative of the error with respect to the weight (i.e., dE/dw) is

Learning internal representations 87

small. In other words, the momentum term has the effect of maintain-
ing weight change in the network when the error surface flattens out
and speeding up weight changes when the error surface is steep. Of
course, if u = 0 then the learning algorithm operates in the usual
fashion.

Exercise 4.7

1. It has been suggested that momentum can help the
learning algorithm solve problems like Xor which
would otherwise be very difficult to solve. Do you
agree with this suggestion? Under what conditions
might it be true?

2. Try running the XOR simulations again but experi-
ment with different values of learning rate and
momentum. Can you find an optimum combination
of learning rate and momentum for the XoRr prob-
lem? In general, isit best to have high or low levels
of learning rate and momentum for Xor? When you
have found another combination of learning rate and
momentum that solves XOR, analyze the solution
the network has found and compare it with the solu-
tion achieved in this chapter. Is there only one solu-
tionto XoR?

Role of hidden nodes

You have already discovered the importance of hidden nodes for solv-
ing the Xor problem. Now examine the different ways in which the
quantity and organization of hidden nodes can effect network per-
formance.

Batch versus pattern update

Examine the expanded version of the Training Options... dialogue
box. You will notice that there is an option called Update weights
every: which has been set to 1 sweep. This option tells tlearn when
to make weight changes in the network. Until now, we have used the
default setting for this option which is to update the weights after

88 CHAPTER 4

Exercise 4.8

Reconfigure your network to use different numbers
of nodes in the hidden layer, say from 1 to 5. Does
increasing the number of hidden units assist the net-
work in solving the task? Determine the role of the
individual unitsin solving the task.

Configure the network with an additional layer of 2
hidden nodes. Does the additional layer accelerate
learning on XOR? Examine the internal representa-
tions constructed in the different hidden layers.

every pattern presentation. In network jargon, this is called pattern
update. Of course, it is possible to delay making weight changes until
the network has seen the other training patterns. A common training
regime, called batch update, involves presenting all input patterns just
once, accumulating the calculated changes for each connection and
then updating the weights for all pattern presentations simultaneously.

In the XOR problem,
every: to 4 sweeps.

Exercise 4.9

this is equivalent to setting Update weights

What do you think are the consequences for the
learning profile of the network when choosing
between pattern and batch update? Can you think of
any computational advantagesin using batch mode?
Test your theory by running XoR in batch mode.
Note: You will also need to deactivate the With
Replacement under the Train randomly check
box if you wanted to guarantee that the network sees
each training pattern on every epoch. Of course,
direct comparison with a pattern update training
schedule would then be inconclusive since until now
you have selected patterns randomly with replace-
ment.

Learning internal representations 89

Answers to exercises

Exercise 4.1

e Thexor. cf£ file should contain the following information:

NODES:

nodes = 3

inputs = 2
outputs =1
output node is 3
CONNECTIONS:
groups = 0

1-2 from il-i2

3 from 1-2

1-3 from O
SPECIAL:
selected = 1-3
weight limit = 1.00

The NODES : section indicates that there are 3 nodes in the net-
work—2 hidden nodes and 1 output node (input nodes don’t count). The
CONNECTIONS : section contains an additional line for the extra layer
of connections in the multi-layered perceptron. There is also a connec-
tion from the bias to the hidden nodes and the output node (1-3 £rom
0). Notice how it is possible to specify network architectures of
increased complexity through minor additionsto the . c £ file.

The xor . teach file requires only a minor change in relation to
theor. teachfile

distributed
4
0
1
1
0
T

he xor.data fileisidentical to the or.data file.

90 CHAPTER 4

Exercise 4.2

e Whether the network has solved the problem depends on the error crite-
rion you decide to use. If you adopt the “rounding off” procedure intro-
duced in Exercise 3.3 on page 63 and further discussed in Exercise 3.4
on page 65 then alevel of global Rms error, namely 0.25, can be used
to guarantee successful performance on all four input patterns. The glo-
bal Rms error displayed in Figure 4.2 falls below this value around the
2000 sweep mark, so the error curve alone tells us that the network has
solved the problem. Of course, the network may have solved the prob-
lem before this point in training.

Exercise 4.3

e Figure 4.12 shows the connectivity of the network after 2001 sweeps of
training on the XoRr probelm. Each connection is depicted as inhibitory
(-) or excitatory (+).

Input Hidden

Bias

FIGURE 4.10 Connections weights in multi-layered perceptron trained for
2001 sweeps on XOR.

Learning internal representations 91

Exercise 4.4

e Usetheweight filesxor.1501.wts and xor.2001.wts to obtain
the exact values of the connections in the network. You can Open these
files from the File menu. Their contents are shown in Figure 4.11. Con-

S[O== nor.1501.wts = S[I== #or.2001.wts g
METHORE COMFIGURED BY TLEARM [T METHORE COMF IGURED EY TLEARN il':
¥ weights after 1301 sweeps # waights after 2001 sweeps N
LEIGHTS # HEIGHTS
TO MODE 1 # TO HODE 1
0. 762256 1. 6962043007
—5.016674 -5 . 6472576795
—-G. 113629 =5.6932244301
0. 000000 0. 0000000000
0. 000000 [N aluln]ulu]n]u]u]nls]
0. 000000 [N aluln]ulu]n]u]u]nls]
TO HODE 2 # TO HODE 2
=-1.311213 2.812660694 1
—1.822644 =2 67631470435
-1.812131 =3.0203299322
0. 000000 [N aluln]ulu]n]u]u]nls]
0. 000000 [N aluln]ulu]n]u]u]nls]
0. 000000 0. 0000aoooo0
TO MODE 2 # TO HODE 3
0.964022 —1.7639975542
0. 000000 0. 0000aoooo0
0. 000000 0. 000aaaao0
-5.751557 -6.8619251251
0.536 163 S.0197623 160
0. 000000 0. 000aaaao0
1 [1 <ok
FIGURE 4.11 Weight files after 1501 and 2001 sweeps of training on XOR.

nections are listed for each target node. The connection from the biasis
listed first, then connections from the input units and so on up through
the network. A value of 0.000000 will almost always indicate that the
connection is non-existent. The state of the network after 2001 sweeps
of training is shown in Figure 4.12.

Exercise 4.5

e Both hidden units are highly active for the first input pattern (O 0) while
only the second hidden unit is active for the second and third input pat-
terns (1 0) and (0 1). Neither of the hidden units are active for the last

92

CHAPTER 4

FIGURE 4.12 Connections weights in multi-layered perceptron trained for

2001 sweeps on XOR.

input pattern (1 1). In other words, the internal representations of the
second and third input patterns are more or lessidentical and so will pro-
duce the same output activation (1)—as they should. In this case, the
excitatory activity from the second hidden node is sufficient to overcome
the negative effect of the bias and turn on the output unit. For the first
and fourth input patterns, the negative connections from the bias and the
first hidden unit guarantee that the output unit remains switched off. The
layer of hidden units have transformed a linearly inseparable problem
into alinearly separable one (see Chapter 2 of the companion volume,
Rethinking Innateness, for a discussion of linear separability).

Exercise 4.6

1.

Repeat the procedure you performed in Exercise 3.6 on page 66. Note,
however, that in this case you will aso need to use the activations of the
hidden units to calculate the activations of the output unit for the 4 input
patterns. Don’t forget to include the bias in your calculations!

Although we have extracted a good deal of information from tlearn
asto how the network solves X OR, we have not explained why thereisa
sudden decrease in the global error between 1501 and 2001 sweeps.
There are several ways to understand how the network suddenly finds a
solution to the XoRrR problem.

Learning internal representations 93

The learning algorithm that we use in this book, backpropagation,
belongs to a family of gradient descent learning algorithms. The ideais
that the learning al gorithm attempts to decrease the error at the output by
traversing an error landscape in a downhill direction. It achieves this by
calculating the slope of the error surface at the current location and mak-
ing changes in the weights which will take it downhill. Thisis the calcu-
lation embodied in in the partial derivative introduced in Equation 1.4 on
page 12. The idea of gradient descent is discussed in more detail in the
companion volume Rethinking Innateness, Chapter 2 (page 71). Therea
son why the network suddenly finds a solution to X OR is that the error
surface has a sharp dip in it, such that a small change in the value of the
weights brings about a relatively large change in the output error.

Another way to understand how the network suddenly finds a solu-
tion to X OR requires that you understand the idea of linear separability
(also discussed in more detail in Rethinking |nnateness, Chapter 2 (page
62-63). We'll review the problem briefly again here. It is possible to vis-
ualize the Boolean functions AND, OR and XOR graphicaly in a two
dimensional plane as shown in Figure 4.13. Different partitionings of the

0,1 1,1
N N
3 H
£ £
0,0 1,0
input 1 input 1 input 1
@ (b) ©
FIGURE 4.13 Geometric representation of the XOR problem. If the four

input patterns are represented as vectors in a two-dimensional
space, the problem is to find a set of weights which
implements a linear decision boundary for the output unit. In
(a), the boundary implements logical AND. In (b), it
implements logical OR. Thereis no linear function which will
simultaneously place 00 and 11 on one side of the boundary,
and 01 and 10 on the other, as required for (c).

space correspond to different Boolean functions. The partitionings
shown in Figure4.13 (a) and (b) represent Boolean AND and OR,
respectively. Notice how the space can be partitioned appropriately sim-

94

CHAPTER 4

ply by drawing a line separating three patterns from the other one. The
problems are linearly separable. In fact, there are an infinite number of
linesthat you could draw that would partition the space appropriately for
these two problems (different angles and positions). Each of these lines
corresponds to a different solution that the network might find, i.e.,, a
different configuration of the weight matrix. In contrast, XoR is linearly
non-separable—it is not possible to partition the space with asingle line
such that all patterns are placed in the correct partition. Thisiswhy you

0,0
N
~ S
é * g *
= 1,1 1,0
0,0 0,1
hidden unit 1 output
€) (b) (©
FIGURE 4.14 Transformation in representation of the four input patterns for

XOR. In (@) the similarity structure (spatial position) of the
inputs is determined by the form of the inputs. In (b) the
hidden units “fold” this representational space such that two
of the originally dissimilar inputs (0,1 and 1,0) are now close
in the hidden unit space; this makes it possible to linearly
separate the two categories. In (c) we see the output unit's
final categorization (because there is a single output unit, the
inputs are represented in a one-dimensional space). Arrows
from (a) to (b) and from (b) to (c) represent the transformation
effected by input-to-hidden weights, and hidden-to-output
weights, respectively.

need a network with hidden units to solve the problem. As we saw in
Exercise 4.5 on page 91, the hidden units transform alinearly non-sepa-
rable problem into a linearly separable one. However, the hidden units
cannot do thisimmediately. The connections between the input units and
the hidden units (and the bias) have to be adapted to an appropriate con-
figuration by the learning agorithm. The configuration is shown in
Figure4.12.

Think about this again from a two dimensional point of view. We
saw in Exercise 4.5 that the network treats the input patterns (1 0) and (0
1) as more or less identical at the hidden unit level. This is represented

Learning internal representations 95

graphically in Figure 4.14. Once the hidden unit activations correspond-
ing to the four input patterns become linearly separable in accordance
with the problem at hand, the network can find a solution. This corre-
sponds to the hidden unit activation of one of the input patterns (in this
case 1 0) moving into a region of the space occupied by its partner (in
this case 0 1). A line can then partition the hidden unit activation pat-
terns into their appropriate categories and produce the correct output
activations. Before this point, no solution is possible and the error
remains high.

For example, after 1501 sweeps of training in the network, the acti-
vations of the hidden and output nodes can be probed to yield the activa-
tion values shown in the Output window shown in Figure 4.15. The

Si——— Dutput EEI:
Made 1, 2 & 2 activations i §
using xor. 1301, wts and xor.data (Training Setl :
0.652 0. 181 0.054 :
0.005 0,024 0.2z :
0.003 0.033 0,722 .
0.0o00 0.006 0.724 -
il b

2 <l i: =31 &

N
o 5 v
5 c
: > i
< ,
0,0 0,1
input 1 hidden unit 1 output
(€Y (b) (©
FIGURE 4.15 Transformation in representation of the four input patterns for

XOR after 1501 sweeps of training. The network is
responding as if it had been trained on Boolean OR. The
network achieves the solution depicted in Figure 4.14 by
increasing the activation of the second hidden unit for input
patterns (1 0) and (O 1) and shifting the demarcation of the
linear partition.

96

CHAPTER 4

corresponding positions of the patterns in two dimensional space are
also shown in Figure 4.15. Clearly, the hidden unit activations do not
permit alinear separation of the problems. In fact, the network is behav-
ing as though it had been trained to solve Boolean OR. To solve X OR the
second hidden unit activations for the patterns (1 0) and (0 1) must be
higher. Once the network has achieved this, the problem becomes line-
arly separable and the solution is quickly reached.

Exercise 4.7

1.

Generally, momentum hel ps when the patterns in the training set have to
be treated in similar ways. Learning on previous patterns can be trans-
ferred to subsequent patterns. Sometimes, momentum can help the net-
work avoid getting trapped in local minima—Ilocal regions on the error
landscape where the error gradient is zero (see Rethinking Innateness,
Chapter 2, page 71).

The identification of an optimum combination of learning rate and
momentum depends on the start state of the network. Since thisis often
determined in arandom fashion, it is difficult to specify what the appro-
priate values of these parameters should be for any given simulation.
However, it is generally agood ideato use a small learning rate to avoid
situations where new learning wipes out old learning.

You will find that there are many solutions to XoR. Some of them
are quite surprising!

Exercise 4.8

1.

You will find that the network seems to do best with just 2 or 3 hidden
units. Although there are many solutions available to the network with 5
hidden units, a common solution is to turn off the hidden units that the
network doesn't need by developing strong inhibitory connections to
them from the bias node. In this manner, the network comes to behave as
if it only had 2 or 3 hidden units.

Learning internal representations 97

2. Adding extralayers of hidden units to the network rarely speeds up the
time to solution. On the contrary, the extralayers of randomized weights
obstructs the construction of good internal representations since the
backpropagation of error (assignment of blame) is reduced from one
layer to the next (see Equation 1.6 on page 14).

Exercise 4.9

e Since weight changes made in batch update reflect the average error for
all the patternsin the training set, learning is likely to follow a smoother
curve than pattern update. Training will also be faster in batch mode
because fewer weight changes are being made on each epoch of training.

