
Introduction

Feedforward networks are trained to approximate a function associat-
ing a set of input patterns with a set of output patterns. It is also pos-
sible to teach networks simply to reproduce their input. In this case,
the input and output layers have the same number of elements. The
network is given a pattern and its task is to pass that pattern through
itself until it is reproduced on the output layer. Thus, the input and the
teacher pattern are identical. In such circumstances, the network is
said to be doing autoassociation or identity mapping. In this chapter,
you will:

• Learn how autoassociation can be used to convert a “local” representa-
tion into a “distributed” representation. This is sometimes called the
encoding problem.

• Investigate how autoassociation can also be useful in discovering redun-
dancies in a set of input patterns which lead to more efficient featural
representations.

• Show how autoassociators can perform efficient pattern completion in
the face of noisy input.

• Develop additional techniques for analyzing hidden node representa-
tions.

CHAPTER 5 Autoassociation



100           CHAPTER 5

Local and distributed representations

In this section, you will encode 4 bit vectors. Therefore, you will need
a network containing 4 input nodes and 4 output nodes. Create a New
Project… called auto1. Configure the auto1.cf with 2 hidden
nodes, such that the 4 input nodes are all connected to the 2 hidden
nodes and the 2 hidden nodes are all connected to the 4 output nodes
in a strictly feedforward fashion. Connect a bias to the hidden and
output nodes. The weights should be randomized within the range

.
Each pattern consists of a 4-bit vector (each bit will be either a 1

or a 0). Furthermore, the patterns you will use in this example are
what might be called “local representations.” These are the patterns: 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Create an auto1.data file and auto1.teach file appropriate for
the task. Note that tlearn offers an alternative format for data pres-
entation when the patterns are represented in a localist fashion, i.e.,
when only a few of many input nodes are non-zero. In the “localist”
format, the input patterns in the .data file are a list of nodes, speci-
fying only the numbers of those nodes whose values are to be set to
one. The node specification follows the conventions used in the .cf
file. See “The Configuration (.cf) file” on page 38. All other input
nodes are assumed to be zero. Localist coding of the output patterns in
the .teach file can be used to specify the output nodes which are to
be on. In other words, an output pattern in the localist case is a set of
integers designating the nodes whose target values are one. All other
nodes are assumed to be zero. Possible data and teach files are
shown in Figure 5.1. You may continue to use the “distributed” mode

Exercise 5.1 

• What is meant by “local representation?” In what
sense are the above patterns instances of local repre-
sentations?

0.5±



  Autoassociation         101

of data coding if you wish. It is introduced here purely as a notational
variant.

Check that you have set up your configuration file correctly by
displaying the Network Architecture. tlearn should depict a net-
work with the same pattern of connectivity as displayed in Figure 5.2.
If you do not obtain this display, then check your auto1.cf file.

FIGURE 5.1 The auto1.data and auto1.teach files using localist cod-
ing mode.

FIGURE 5.2 Network Architecture for auto1.



102           CHAPTER 5

Training the network

Feel free to experiment with the range of training options available to
you. For purposes of exposition, however, we will refer to a simula-
tion in which the following training options have been selected: Set
the learning rate parameter to 0.3 and specify a momentum of 0.9.
Specify a random seed of 1 and train randomly, updating the weights
after every sweep (pattern update). Train the network for 3000
sweeps. You may also wish to activate the error display to examine the
global RMS error.

When you have found a configuration of training parameters that
yields a solution to the encoding problem, select the Node Activation
display. Make sure that you have selected the Most recent weights
file in the Testing Options… dialogue box. You should observe a dis-
play like that shown in Figure 5.3. Cycle through the four input pat-
terns and check that the network is autoassociating in the required
fashion. Cycle through the four input patterns again and see how the
hidden units have encoded these 4 patterns. The hidden unit activa-
tions will have learned to encode their input/output pattern pairs by
using a distributed representation of the patterns.

You have seen how a network can represent 4 input patterns using 2
bits. What do you think would happen if you modified the network so

Exercise 5.2 

• What level of global error guarantees that tlearn
has found a solution to the encoding problem?
(Assume the rounding off criterion for evaluation
purposes.)

Exercise 5.3 

1. What is the key to this distributed representation?
Why is the representation “distributed”?

2. Open up the weights file auto1.3000.wts and
look at the network which did the encoding. Draw
the network. Show weights on each of the connec-
tions, and put the biases inside the nodes.



  Autoassociation         103

that it had 5 inputs and 5 outputs, but still only 2 hidden units; and
then trained it to encode the following patterns?

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

FIGURE 5.3 Node Activations Display for auto1 after 3000 training sweeps.

Exercise 5.4 

• Do you think the network could do the task? Con-
struct such a network and report your results. So as
not to override the work on auto1, call this project
auto2.



104           CHAPTER 5

Pattern completion

Now return to the original autoassociation task in this exercise—
auto1. Modify your auto1.data file so that one of the input pat-
terns is distorted. For example, you might change the input pattern
1 0 0 0 to 0.6 0 0 0.2. You’ve just introduced noise into the
input stream. In the Testing Options… dialogue box select the
auto1.3000.wts file which you created earlier. Now test your net-
work again using the Verify Network has learned option. Alterna-
tively, you can observe the response on the Node Activation Display.

This phenomenon, called pattern completion, is a result of the com-
pressed internal representation. The difference between a degraded
and a pristine input pattern is partially eliminated when the activation
goes through the nonlinearity at the hidden layer.

Feature discovery

In this section, you will investigate another purpose to autoassocia-
tion, which is to discover a featural representation of the input.
Because the intermediate (hidden) layer(s) are generally of smaller
dimensionality than the input and output layers, for the autoassocia-
tion to work, the network is required to funnel the pattern of input
activation through its narrow “waist.” The pattern of hidden unit acti-
vations must be efficient and concise; if the hidden units are to suc-
cessfully regenerate the input pattern on the output layer, they must
discover some representation of the input which is reduced but which
contains all the information necessary to recreate that input. This task

Exercise 5.5 

• Has the network partially reconstructed the noisy
pattern? Experiment with input patterns that have
noise in different locations and in differing amounts.
Is there some critical noise level (or combination of
noise values) for which the pattern completion fails?



  Autoassociation         105

encourages the network to discover any structure present in the input
so that the input can be represented more abstractly and compactly.
The network need know nothing about the significance of the input.

To do this exercise, you will need a network that has 7 input nodes
and 7 output nodes, and 3 hidden nodes. The data file should contain
the following 8 input patterns:

1 1 0 1 0 0 1 
1 0 0 1 1 1 1 
1 0 1 1 1 0 0 
1 1 0 1 0 0 0 
0 1 0 0 0 0 1 
0 1 0 0 0 1 0 
0 0 0 0 1 0 0 
0 0 1 0 1 1 0

Since the task is autoassociation, the input and output patterns will be
identical. You will need to study the activation of the hidden nodes so
make sure that they are selected in the SPECIAL: section of the
.cf file.

Exercise 5.6 

• What does it mean to say that the concept of “redun-
dancy” is a property of a set of patterns?

Exercise 5.7 

1. Before running the network, study the input pat-
terns. Do you see any way(s) of grouping the pat-
terns? That is, do any of the patterns resemble each
other? Are there different ways of grouping the pat-
terns?



106           CHAPTER 5

Now see if there is any similarity structure to these patterns. This
involves looking at the hidden node activation patterns. Do this twice.
First, test the activations of the 3 hidden nodes in response to each of
the 8 probes. You can display hidden node activations by selecting the
Probe Selected Nodes option in the Network menu. If you have
specified the hidden nodes as “selected” in the SPECIAL: section of
the .cf file, then the hidden node activations will be displayed in the
Output window as shown in Figure 5.4. Can you discern any patterns?
Probably not; so do something else. This involves editing the Output
window containing the activation of the hidden nodes First, clear the
two lines at the beginning of the file containing header information so
that you are left with a file containing 8 rows and 3 columns, each row

2. Train the network for 4000 sweeps. (The results
reported below use a random seed of 1, learning rate
of 0.3 and momentum of 0.9. However, you may
choose a different configuration if you wish. Just
remember that in this case the results will look a bit
different.) 

3. After the network is trained, test the network to see
that it has learned to generate the correct output. Has
the network learned to regenerate the input patterns?
How well?

FIGURE 5.4 Hidden node activations in an autoassociation task produced by
Probe Selected Nodes in the Network menu.

Exercise 5.7 



  Autoassociation         107

specifying the hidden node activations for each input pattern. Insert a
name representing the input pattern at the beginning of each line. You
can use any numeric characters you choose for this label just so long
as it doesn’t contain a space. When you have edited the Output win-
dow it should resemble the window displayed in Figure 5.5. Use the
Save as… option in the File menu to save this file as auto3.sort.

Your goal is to see whether the internal representations (that is,
the hidden node activation patterns) give you any clue as to the simi-
larity structure of the patterns you have autoassociated. To do this, it
would be useful to be able to group the patterns in various ways. You
might wish to sort all the patterns according to the values of the first
hidden node, for instance. This would group (or classify) the patterns
according to how the hidden node “interpreted” them. It might be that
the first hidden node discovered some feature which is present in
some of the patterns but not in others, so that you find two groups of
patterns. (Or perhaps not.) Similarly, you would also like to sort the
patterns according to the values of the second hidden node, and the
third hidden node. You can do this easily using the Sort… utility. This
utility will sort a file, row by row. You can indicate where you want to
start in the row and skip over certain columns.1 Select the Sort…
option from the Edit menu. The dialogue box depicted in Figure 5.6
appears. If you look at the format of your file auto3.sort, you will

FIGURE 5.5 Hidden node activations listed by pattern name.

1.  You can even perform a nested sort whereby rows are first sorted by one column. 
Rows which match on one column then undergo sorting in a second (user specified) 
column.



108           CHAPTER 5

see that the first hidden node activation is in the second column. Thus,
to sort according to values of the first hidden node, you need to set
the primary field: box in the Sort… dialogue to 1. We are not con-
cerned here with performing a nested sort so leave the secondary
field: box as 0. Click on . tlearn will then prompt you for
a file name in which to save the sorted data. You can then Open… this
file from the File menu. The lines in the resulting file will be dis-
played in a different order to those in auto3.sort. You will see that
they are ordered by ascending values of the first hidden node. In a
similar way, you can sort by the remaining hidden node activations.
Just select the appropriate Primary field: in the Sort… dialogue.

FIGURE 5.6 The Sort… dialogue box.

Exercise 5.8 

1. You will probably find at least one, and probably
two, hidden nodes which nicely classify the input
patterns. What aspects of the patterns does each hid-
den node seem to be attending to? Are the features
in the patterns confined to single bits, or multiple
bits? Do all hidden nodes succeed in finding fea-
tures?

2. Earlier we said that redundancy was a property of
sets of patterns. What implications does this have
for a network which was taught on a random subset
of 3 of the above patterns. Would you expect similar
hidden node patterns to develop? Why or why not?



  Autoassociation         109

3. Let’s say that you believe you have found a feature
in the patterns which is being extracted by the net-
work (extracted in the sense that a hidden node
always is highly activated whenever a pattern with
that feature is present). It would be interesting to be
able to test your hypothesis, using the network you
have just trained. How might you test your hypothe-
sis? Do the test and report your results.

Exercise 5.8 



110           CHAPTER 5

Answers to exercises

Exercise 5.1 

• Localist representations are similar in some ways to traditional symbolic
representations. Each concept is represented by a single node, which is
atomic (that is, it cannot be decomposed into smaller representations).
The node’s semantics are assigned by the modeler and are reflected in
the way the node is connected to other nodes. We can think of such
nodes as hypothesis detectors. Each node’s activation strength can be
taken as an indicator of the strength of the concept being represented. 

The advantage of localist representations is that they provide a
straightforward mechanism for capturing the possibility that a system
may be able to simultaneously entertain multiple propositions, each with
different strength, and that the process of resolving uncertainty may be
thought of as a constraint satisfaction problem in which many different
pieces of information interact. Localist representations are also useful
when the modeler has a priori knowledge about a system and wishes to
design the model to reflect that knowledge in a straightforward way.
Finally, the one-node/one-concept principle makes it relatively easy to
analyze the behavior of models which employ localist representations. 

The input patterns used in this exercise are localist because just one
node tells you all you need to know about to identify the pattern from all
the others in the training set.

Exercise 5.2 

• Using the same logic as in Exercise 3.3 on page 63, the maximum RMS

error that guarantees that all patterns have been properly encoded is
given by the expression: 

RMS  

Notice that this result is identical to the answer to Exercise 3.3. In both
cases there are 4 input patterns and only one output node is supposed to
be active.

error
0.52( )

4
--------------≤ 0.25=



  Autoassociation         111

Exercise 5.3 

1. If you used the same network parameters as we suggested, you should
find that the input patterns produce the hidden unit activations shown in
Table 5.1. Different training parameters will yield different representa-

tions at the hidden unit level. The solution shown in Table 5.1 is particu-
larly clear: Each input pattern produces a unique binary pattern across
the hidden nodes. The two-dimensional hidden unit vector makes opti-
mal use of the space of activations available to it (cf. Figure 4.14a). The
different hidden unit activations permit the network to distinguish the
input patterns and reproduce them at the output.

In a distributed representation, a common set of units is involved in
representing many different concepts. Concepts are associated, not with
individual units, but instead with the global pattern of activations across
the entire ensemble. Thus, in order to know which concept is being con-
sidered at a point in time, one needs to examine the entire pattern of acti-
vation (since any single unit might have the same activation value when
it participates in different patterns). For example, the activation level of
the first hidden unit in auto1 is insufficient to identify which pattern
was presented at the input. It is necessary to know the activation of both
hidden units.

2. The final state of the network for solving the encoding problem is
depicted in Figure 5.7. Can you decipher how the network has solved the
problem? For example, why is it that the second output node has a posi-
tive bias while all the others have a negative bias?

TABLE 5.1 Hidden unit representations of four localist input patterns in an
autoassociator.

Activations

Input Hidden

1 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 1 1

0 0 0 1 1 0



112           CHAPTER 5

Exercise 5.4 

• At first blush, you might conclude from Exercise 5.3 that the network
with 2 hidden units had used up all the distributed representations avail-
able—2 units can encode 4 binary patterns—and that more hidden units
are necessary to solve the 5 pattern problem. This would be correct if the
hidden units were restricted to binary activations. But, of course, they’re
not! They can take on any real value between 0 and 1. This means that
there are many possible combinations of hidden unit activations that can
be used to represent distinct input patterns (see Rethinking Innateness,
Chapter 2, Figure 2.17 and associated discussion).

So the answer is that auto2 can solve the problem with just 2 hid-
den units though you might find that it finds a solution quicker with 3.
Why do you think this might be?

Exercise 5.5 

• With the suggested input pattern (0.6 0 0 0.2), the network does an
excellent job of reconstructing a cleaner version of the input. However,
as the noise on other input units increases in value the accuracy of com-
pletion will deteriorate. When the input is ambiguous, such as when two
input units are both fully on or at 0.5, pattern completion will be partic-
ularly bad.

FIGURE 5.7 Network for the solution of the encoding problem in auto1.

-0.1

-4.9
-3.2 3.8 4.1

-0.3

3.0
-4.3 4.8

-4.0

-3.1

-8.4

7.2
3.5

-7.3 -7.7

-9.5

6.2

6.6

-3.8
7.5

-7.4



  Autoassociation         113

Exercise 5.6 

• We say that information in a pattern is redundant if one bit of the input
vector can be predicted by the activity of another bit. Of course, in order
to conclude that this is (or is not) the case, it is necessary to look at more
than one pattern. Hence, redundancy is a property of a set of patterns,
not a single pattern.

Exercise 5.7 

1. As the patterns are displayed, it may seem that the activity of the first
node divides the 8 patterns conveniently into 2 groups. But, of course,
this is true of all the nodes in the patterns. Alternatively, you might
decide to group the patterns in terms of the number of nodes that are
activated, or whether that number is odd or even. Clearly, there are many
ways in which the patterns could be categorized.

2. The network should learn to perform the task quite well given that you
have used the training parameters suggested in the text.

3. Of course, your estimation of how well the network has done depends
on the criteria you set for success!

Exercise 5.8 

1. The hidden unit activations for the different input patterns are shown in
Figure 5.8, sorted by first, second and third hidden units, respectively.
The first hidden unit appears to categorize the patterns neatly into two
distinct groups. However, it is unclear from the patterns what the basis
of this categorization is. In contrast, the second hidden unit seem to be
sensitive to the activity of the first and fourth input units and the third
hidden unit to the activity of the second and fifth input units.

2. If you select a subset of the input patterns for the encoding problem, the
nature of the task defined for the network is changed—correlations in
the activity of different input units across a large set of patterns may not
hold for a smaller set of patterns. The smaller set might contain the only



114           CHAPTER 5

exceptions to the correlation in the larger set. So you shouldn’t expect
the hidden units to develop identical patterns of activity when trained on
a subset of the patterns. Try it!

3. It is relatively easy to test any hypothesis about the cause of the hidden
unit activations—just create some novel data patterns that contain only
the target feature you have in mind and see if the hidden units react as
you predict (using the Testing Options… dialogue box to select the
novel data set). Of course, you can always take a close look at the weight
matrix in an attempt to evaluate your hypothesis. This approach often
works well for small networks, but becomes cumbersome for larger sys-
tems.

FIGURE 5.8 Unit activations sorted on the first (a), second (b) and third (c)
hidden units, respectively.

(a) (b) (c)


