
Why is generalization important?

We rarely train networks on random collections of data. Typically, we
choose the data because they come from some domain in which we are
interested. Sometimes we know in advance what the relationship is
between the input/output pairs and our goal is to see whether the net-
work can discover it. An example of this is the XOR function; we
know that this is a difficult function and we may wish to study the
conditions under which it may or may not be learned. Other times, we
know there is a regular relationship but may not be able to formulate it
precisely; our goal in this case is to use the network as a discovery
device to uncover hidden relationships and make the mapping func-
tion explicit. For example, when Lehky & Sejnowski (1990) trained a
network to determine shape from shading information, they were able
to analyze the network afterwards in order to discover the computa-
tional primitives used to solve the problem.

The important point in both cases is that we assume the network
has extracted some generalization from the training data. That is the
whole point of training. Whether our purpose is to see whether the
network can generalize, or use the network to help discover what the
generalization is, we want the network to induce the underlying regu-
larity from the examples given.

CHAPTER 6 Generalization

116 CHAPTER 6

How do we know when a network has generalized?

Let us imagine we train a network on some set of data. After some
number of training cycles, we observe that the error on the dataset
(say, averaged over all the items) has dropped to a low number.

How low is low enough? Well, here we must be careful. Let’s say
the training set consists of 100 patterns; each pattern is itself a 100-
element vector with one of the bits set to 1 and the remaining 99 bits
set to 0. That is, the desired targets would look something like:

Let’s also assume that over the course of training, we monitor the RMS

error and observe the pattern shown in Figure 6.1. At the outset of
training, RMS error is close to 50; after 1,500 training sweeps the
error has dropped to approximately 1.0. This seems good; based on
the mean error we might feel the network has learned the dataset.

Surprise! In this example, a mean error of 1.0 might actually
result from very bad performance. How might this be? Let’s think
about our training data in detail and ask ourselves what it would take
for the network to achieve such a performance. Each output pattern is
of the same basic form (100 0’s with a different single bit set to 1) so
we can pick an arbitrary teacher pattern and focus on that. Let’s pick
the first pattern: 10000. . .000. When networks are initially configured,
connections are often assigned weights drawn from a uniform distri-
bution ranging say from -1.0 to 1.0. The mean of the weights on
incoming lines to a node is thus 0.0. Therefore, net input (the product
of weight times activation on sending units) will tend to be close to

TABLE 6.1 Sample data

Pattern
number

Desired outputs
(each vector has 100 elements)

#1 10000. . .000

#2 01000. . .000

#3 00100. . .000

.

#99 00000. . .010

#100 00000. . .001

 Generalization 117

0.0. Assuming a sigmoid activation function, nodes will therefore
usually have activations close to 0.5 at the outset of learning. (This
actually makes sense, from the viewpoint of making it easy for a node
to move in either direction.) Given a target pattern of 10000. . .000,
this will yield an initial RMS error of approximately 50.0. (The first
unit has an activation of 0.5 when it should be 1.0, giving an error of
0.5; and the remaining 99 units are 0.5 when they should be 0.0,
yielding a summed error of 49.5) This is why the error shown in
Figure 6.1 starts off close to 50.0.

Now consider the problem facing the network. Each pattern has
99 0’s and a single 1, always in a different position. Given the large
number of 0’s which are present in each pattern, a quick way to
reduce error across the entire pattern set would be to turn all of the
output nodes off. If the network does this, it will get 99 of the output
nodes correct (so there will be 0.0 error from them) and only one out-
put node wrong. The total error will thus be 1.0—quite a dramatic
improvement over the initial error! This is what we see in the latter
portion of Figure 6.1. It should be clear, however, that although the
network has in some sense learned an important feature of the training
set (i.e., that patterns contain a preponderance of 0’s), it hasn’t
learned the part we might be more interested in (i.e., which bit posi-
tion has a 1, on any given pattern). The lesson of this example is that
we need to think carefully about the criteria for success. If we are

FIGURE 6.1 Hypothetical error plot after training a network to produce the out-
puts shown above. After 1500 pattern presentations, the error is
slightly above 1.0.

E
rr

or

Training sweeps

0.0 500 1000 15000.0

10.0

20.0

30.0

40.0

50.0

60.0

118 CHAPTER 6

going to use a global statistic such as mean RMS error over a pattern
set, we must be careful to figure out what performance could give rise
to different ranges of error, and what error levels would be indicative
of success (however we chose to define it).

In previous chapters, you’ve used a network to approximate a function
associating a set of input patterns with a set of output patterns. In the
XOR task explored in Chapter 4, for example, a network was trained
by presenting all possible input patterns and the appropriate output. In
many cases, however, it is preferable to withhold some input/output
pairings from the training set, and to use these patterns to test the
fully trained network. If the network performs correctly on these
novel patterns (i.e., the network has never seen these particular pat-
terns before), then one can feel confident that the network has induced
a general function from the specific exemplars on which it was
trained, rather than simply “memorizing” the training set. Such a net-
work is said to have generalized.

One of the principal factors controlling generalization is the
number of hidden nodes available to the network. If a network has siz-
able internal resources (relative to the task at hand), there will be little
pressure on the network to find an efficient, and hence more general,
solution. Rather, the network will simply memorize the patterns.
(Note that the use of the term “memorize” in this context, while com-
mon among connectionist researchers, is somewhat misleading. A net-
work always learns some function from input to output—in the sense
that if you present a novel input pattern to the network, some pattern

Exercise 6.1

• Consider the pattern set described in the previous
section (i.e., 100 patterns, each containing 99 0’s
and a single 1). Let us establish the criterion that to
be successful, the network must (a) have output acti-
vations not greater than 0.1 on bits which should be
0.0, and (b) have an output activation not less than
0.9 on the bit which should be 1.0. (This is a some-
what stringent criterion; in reality, we might be sat-
isfied with outputs of 0.3 or 0.7.) What error level
must we have on a single pattern to be guaranteed
that the network’s performance meets this criterion?

 Generalization 119

of activation will be produced across the output units—but the func-
tion may not correspond to what the researcher “had in mind.”) If a
network has too few hidden units, then it will simply be unable to
learn the training set. A trade-off is thus established; give the network
enough internal resources to learn the training set (to some criterial
performance level), but no more (to encourage generalization). Find-
ing this magic number of hidden units usually involves some trial and
error.

A second important factor to keep in mind when trying to get a net-
work to generalize is the selection of the training set. The subset of all
possible patterns must properly sample the function space or the net-
work won’t have any chance of generalizing properly (i.e., to the
function you had in mind). For example, what do you think would
happen if you tried to get a 2x2x1 network (like the network in

Figure 4.1) to learn XOR by training it on the three patterns in
Table 6.2.

In this chapter, you will:

• Evaluate characteristics of the network’s architecture and training
data that promote generalization.

• Show how the response properties of the unit’s activation function
can influence generalization.

TABLE 6.2 An incomplete XOR

INPUT OUTPUT

0 0 0

0 1 1

1 0 1

Exercise 6.2

• What function do you think the network would learn
from the data in Table 6.2? Would it generalize
properly to the missing XOR pattern? Try it. Do you
think it’s possible to train a network on XOR with
less than the full data set?

120 CHAPTER 6

• Learn how to perform cluster analyses of hidden unit activa-
tions—another technique for getting at the similarity structures
discovered by the network.

Analogue addition

Continuous Xor

In Chapter 4 you saw how a three-layer, feedforward network can
learn to perform the XOR function via the backpropagation learning
algorithm. The XOR task employs both binary inputs and binary out-
puts. But backpropagation is by no means restricted to binary inputs
or outputs. For example, a continuous-input version of the XOR prob-
lem can be defined as in Table 6.3. The rule can also be expressed ver-

bally as follows:

“Combine pairs of inputs such that if either is greater than 0.5 the output is
a 1; however, if both are greater than 0.5 or less than 0.5, then the output is
a 0.”

Thus, we have created a problem which—instead of having binary
inputs and binary outputs—has continuous inputs and binary outputs.

Binary outputs are typical of classification problems in which the
inputs (consisting either of binary or continuous-valued units) are
classified by the network into one of several categories. Problems of

TABLE 6.3 Continuous Xor

INPUT OUTPUT

> 0.5 < 0.5 1

< 0.5 > 0.5 1

> 0.5 > 0.5 0

< 0.5 < 0.5 0

 Generalization 121

this sort essentially require the network to partition the input space
into as many disjoint regions as there are output categories.

In the more general case, input and output units are both continu-
ously valued. The role of the network then is to construct a continuous
mapping from input values to output values based on the examples
provided by the training data. In principle, a three-layer feedforward
network is capable of performing any desired mapping from input to
output. But this ignores the crucial questions of how many hidden
units will be required, and how easily and accurately the mapping will
be learned. Nevertheless, networks using backpropagation to learn
continuous mappings have been quite successful in a number of real-
life applications.

The addition problem

In this section, you will examine a very simple example of a network
learning to perform a continuous mapping from input to output: ana-
log addition (i.e., the output value is to be the sum of the input val-
ues). As with XOR you will have two input nodes, two hidden nodes,
and one output node. Since we are simulating an addition process, set
the output node to have a linear activation function. To achieve this,
just include the line

linear = 3

in the SPECIAL: section of the .cf file. This instruction sets all the
nodes to the right of the equals sign to be linear units, i.e., their acti-
vation is the same as their net input. In this case there is only one out-
put node—node 3. You may think that including linear nodes in the

Exercise 6.3

• If we plot the input pairs as points on a Cartesian
plane, the space of all possible inputs is the square
region bounded by the points (0,0), (0,1), (1,0), and
(1,1). The continuous-input XOR partitions this
space into two distinct regions. Draw a graph illus-
trating these regions. Do you think this version of
the XOR problem is easier or harder than the binary
version for a network to solve? Why?

122 CHAPTER 6

network trivializes the problem. Note however that all input activa-
tions must first pass through the layer of nonlinear hidden nodes
before reaching the linear output node.

Create a New Project and call it addition. Let us agree to allow
only inputs between 0.0 and 0.5; then we only expect output between
0 and 1. Furthermore, let’s restrict the training data to numbers with
only a single decimal place. This means that there are 36 possible
training patterns. You can test the network on higher precision num-
bers later. Now you need to create a set of training data. This training
set will consist of pairs of numbers between 0.0 and 0.5 and their cor-
responding sums. Unlike the XOR problem, do not present the network
with an exhaustive list of all possible input/output combinations.
Instead, devise what you believe is a representative subset of perhaps
ten or so possibilities.

The deeper question here is how well the network has generalized
from the training data. After all, the training data only informs the
network as to what the input-output mapping should be for a small set
of points in the input space. How do you know that the network will
give the desired answers for inputs that were not included in the train-
ing set?

Another interesting question is how the network actually performs
the addition, in view of the inescapable nonlinearity in the two hidden
nodes.

Exercise 6.4

• Run the network for 200 epochsa with a learning
rate of 0.3 and momentum of 0.9. Now test the net-
work. How well has the network learned the training
data?

a. An epoch consists of a single presentation of all the training examples in the
data file. Since there are, say, 10 input patterns in addition.data then 200
epochs consists of 2000 sweeps. Note that if you choose toTrain randomly there
is no guarantee that all the input patterns will be presented on a given epoch,
unless you determine that pattern selection is conducted in a random manner with-
out replacement in the Training options dialogue box by deselecting the with
replacement check box.

 Generalization 123

Categorization

Next consider a categorization function which takes 4-bit vectors as
input and sorts them into two categories. The single output bit is ON
when the input vector has exactly two bits ON (two and only two), in
all other cases the output bit is OFF. Thus, six of the 16 possible
inputs produce a 1 at the output, the rest produce a 0.

Exercise 6.5

• How well does the network add any valid pair of
inputs? You can create novel pairs of inputs in a new
data file called novels.data and load those patterns
into the network using the Novel data: option in the
Testing Options… dialogue box. You do not need
to specify an equivalent novels.teach file just
as long as you switch off the Calculate error
option in the Testing Options… dialogue box.
Note however that the test file must end with the
extension .data. before testing the network. Try a
smaller or larger training set; how sensitive is the
network to the size of the training set? What if the
training set draws most of its examples from cases
where both inputs are less than 0.25? How accu-
rately does the resulting network add inputs greater
than 0.25?

Exercise 6.6

• Draw the network. Show weights on each of the
connections, and put the biases inside the nodes.
Can you explain the principle that the network is
using to perform the addition? Can you think of an
alternative principle, i.e., a fundamentally different
approach to getting a network with nonlinear hidden
nodes to output a linear combination of its inputs?

124 CHAPTER 6

An additional hidden unit gives the network another dimension of
freedom in traversing the weight space. Thus, the network is less
likely to get caught in a local minimum. When you’ve found a random
seed which works with a 4x2x1 network save the weights file. In the
next section, you’ll explore some techniques for analyzing the net-
work’s solution.

Exercise 6.7

1. Build a 4x3x1 network. Call the project gen. Cre-
ate the necessary data and teach files according
to the function described above, but withhold two of
the 16 patterns as indicated in Table 6.4. Train the
network using a learning rate of 0.3 and a momen-
tum of 0.9 for 400 epochs. Test the network. Has the
network learned to categorize the patterns correctly?
If not, repeat the experiment with a different random
seed until it succeeds.

2. Now test the network for generalization using the
two patterns which you withheld from the training
set. You will need to create a new data file and
load it into the program with the appropriate set of
weights. Has the network generalized properly? Do
you think the same thing would have happened if
you had withheld any two patterns? Test your
hypothesis by repeating the experiment with differ-
ent pairs withheld.

3. Try repeating the experiment with a 4x2x1 net-
work. Does the network learn the training set? It
may well not. Try different random seeds until the
net converges. Why do you think it’s so much more
difficult with only two hidden nodes? That is, given
that a solution does exist with two hidden nodes,
why does the network fail so frequently to find it?

 Generalization 125

Network analysis

Once a network has learned a training set to some criterial perform-
ance level, the next step is to analyze the solution which the network
has found. A variety of techniques are employed to do this, each of
which gives valuable clues regarding network behavior. For example,
you might probe the network with carefully selected inputs and look
at the resultant hidden node and output patterns. This should give you
some idea of the manner in which the network is transforming infor-
mation. This is analogous to conducting a psycholinguistic experi-
ment in which the network is the subject and the probe stimuli are
selected to test hypotheses about what the network has learned. You
should also examine the network performance across each pattern in
the training set. Even though the total error may have dropped to cri-
terion, the network may in fact be performing very well on some pat-
terns, and only moderately well on others.

Once these holistic techniques have been exhausted, however, the next
step is to open up the network and look inside. Unfortunately, much
like a brain, most networks simply look like mush when you examine
their innards. Nonetheless, a couple of feasible alternatives do exist.
With a small network, for example, you can simply draw (by hand) a
big version of the network, write in the connection strengths and
biases, then pass activation through the network by calculating it
yourself. This was the technique you used in analyzing the XOR net-
work in Chapter 4.

TABLE 6.4 Test examples for gen project.

INPUT OUTPUT

0 0 1 0 0

1 0 1 0 1

Exercise 6.8

• Does this differential performance suggest some-
thing about the nature of the network’s solution?

126 CHAPTER 6

Hand analysis

Try this technique again using the weights file you generated at the
end of the section on categorization. Recall that in that experiment a
network learned to take a 4-bit input string and (using just two hidden
nodes) to output a 1 if the input had exactly two bits turned ON (two
and only two). All other inputs produced a 0 on the output.

Cluster analysis

Another technique for analyzing a network solution is to look at how
the similarity structure of the input patterns is changed as a result of
going from the input to the internal representation. tlearn possesses
a utility called Cluster Analysis… (an option in the Special menu)
which exists to aid you in this regard. This utility takes as input a set
of vectors and performs a hierarchical cluster analysis, drawing a tree
diagram of the similarity structure. The Cluster Analysis… dialogue
box is shown in Figure 6.2. Start by seeing what sort of similarity
structure is inherent in your input patterns. Use the tlearn editor to

Exercise 6.9

1. Think about this task for a moment. Can you think
of a solution to this problem (across two hidden
nodes)? That is, under what conditions should each
of the two hidden units turn ON, such that the net-
work could properly complete the problem in the
next layer of connections (from hidden to output)?

2. Now draw out the network you actually trained and
pass several test patterns through the connections.
(Remember that you can use the logistic table in
Exercise 1.1 on page 8 to calculate the activation
from the net input.)

3. Can you characterize the function of each of the two
hidden units? Under what conditions do they each
turn ON? How does this solution compare to the one
you invented?

 Generalization 127

generate two files from your gen.data file. One file should contain
just the 14 four-bit input vectors (call it gen.inp) and the other file
should contain 14 pattern names. Your files should be identical with
those shown in Figure 6.3. To cluster the input vectors open the rele-
vant files in the Vector file: and Names file: boxes, select the Display

FIGURE 6.2 Cluster Analysis… dialogue box.

FIGURE 6.3 Sample input files for the Cluster Analysis… utility.

128 CHAPTER 6

Graphical Cluster Tree box and Execute the analysis. tlearn will
display a window containing a cluster analysis on your screen as
shown in Figure 6.4.

Now perform a similar analysis for the hidden node activations. You
will need to test all the patterns in your training set and save the hid-
den node activations as you did in Exercise 4.5 on page 85. Then cre-
ate the necessary files for the cluster analysis as above.

FIGURE 6.4 Cluster analysis of the gen.data pattern files.

Exercise 6.10

• Can you see any similarity structure in the input pat-
terns? Is this structure relevant to the task? Why
not?

Exercise 6.11

• Has a meaningful similarity structure emerged at the
hidden unit level? Does this agree with what you
learned earlier about the function of each of the two
hidden nodes?

 Generalization 129

The symmetry problem

These are the basic techniques of network analysis. Try using them
yourself on the following problem, called the symmetry problem.
Build a 6x2x1 network, which will take 6-bit inputs and output a 1 if
the input pattern is symmetric, i.e., if the last three bits mirror the first
three. For example, 0 1 0 0 1 0 and 1 1 0 0 1 1 are symmetric,
while 0 1 1 0 1 1 is not. Thus, eight of the 64 possible input pat-
terns are symmetric. Note that it is possible for a network to solve this
problem with only two hidden units, but it may require some fiddling
with the random seed, learning rate, and momentum.

Exercise 6.12

• Once the network has learned the problem, analyze
its solution using the techniques discussed in this
chapter.

130 CHAPTER 6

Answers to exercises

Exercise 6.1

• This is a trickier question than it might first seem. The answer is not
10.0, as you might think (assuming that each of 100 bits produces 0.1
error). Other scenarios exist which could give an even lower error but
still not satisfy our conditions for success. Suppose, for example, the
network produced a 0.0 on all the outputs. This would yield an error of
only 1.0—but our condition (b) would not be satisfied. Clearly, only one
output activation need be off by more than 0.1. So the highest level of
error that meets the desired criterion for a single pattern is just 0.1.

Exercise 6.2

• Unless you are really lucky, the network will learn Boolean OR when
trained on the patterns listed in Table 6.2. When you test the network’s
generalization to the pattern 1 1, it will most likely respond with an out-
put of 1. You are not providing the network with any evidence for it to
believe this is not a linearly separable problem (see Exercise 4.6 on
page 92). Under what circumstances might you get lucky and have the
network generalize to the novel input 1 1 as if it had learned XOR?

Exercise 6.3

• The partitioning of the Cartesian plane for Continuous XOR is shown in
Figure 6.5. This is a more difficult problem than Binary XOR because
the network has to be more precise about how it partitions the space.
Recall from Chapter 4 that the network solved XOR by moving the 4
points around the Cartesian plane so that they could be partitioned
appropriately (see Exercise 4.6 on page 92). Now the network must take
more points into consideration.

 Generalization 131

Exercise 6.4

• Unless you were unlucky and chose a set of training parameters that got
the network stuck in a local minimum, you should experience no diffi-
culty in training the network to solve this problem. If the network did get
stuck in a local minimum, then just try another random seed to initiate
the weight matrix.

Exercise 6.5

• The network does surprisingly well at adding any legal combination of
inputs, just so long as you have constructed a training set that is repre-
sentative of the problem. For example, the network can learn to perform
addition for all 36 input patterns when it has only been trained on 5 of
them, if you make sure that the training set spans the full range of out-
comes possible, i.e., 0.0 through 1.0. However, if you restrict the prob-
lem to inputs below 0.25 you will find that the network becomes
increasingly inaccurate as the solutions extend above 0.5.

FIGURE 6.5 Partitioning of the Cartesian plane for Continuous XOR.

input 1

in
pu

t 2

1

1

0

0.5

0.5

= 0

= 1

132 CHAPTER 6

Exercise 6.6

• When the network is trained for 2000 sweeps with the inputs shown in
Figure 6.6, with a learning rate of 0.3, momentum of 0.9 and a random
seed of 1 (trained randomly without replacement), the final state of the
network is as shown in Figure 6.6.

The network has discovered a rather clever solution to the problem.
Notice that the bias on hidden node 2 is quite large and negative. With
the negative connection from the second input node, the second hidden
node will remain virtually inactive (output close to 0.0) for any input
pattern. The second hidden node, therefore, has no effect on the output
activation. In contrast, the first hidden node has a small positive bias and
almost identical negative connections from the two input nodes. Con-
sider the case when the input is 0 0. The net input to first hidden node is
just the bias, i.e. 0.8. This produces an activity of around 0.7 on this hid-
den node (see Exercise 1.1 on page 8). When this activation is fed
through the negative connection to the output node, it exactly cancels
out the positive bias to produce an output of 0.0 (remember the output
node is linear). Now consider the input 0.5 0.5 which is the largest legal
input to which the network is exposed. In this case, the activity propa-
gating up from the input nodes more or less cancels out the positive bias
of the first hidden node to produce a net negative input of -0.87. This
produces an activity of around 0.3 on the first hidden node. When this
activation is fed through the negative connection to the output node, it
counteracts the positive bias to produce an output of 1.0. The first hid-

FIGURE 6.6 Training set and weight matrix after 2000 sweeps on the addition
problem

1.75

0.8

-2.4

-1.74

-1.18

0.34

-1.67 -2.5

-0.24

 Generalization 133

den node, the connections feeding into and out of it, and the bias on the
output node are doing all the work.

How has the network managed to solve the addition problem given
that the hidden nodes are nonlinear? We have just seen that we only need
to consider the first hidden node. The minimum net input arriving at this
node is -0.87 and the maximum net input is 0.8. Now recall the node’s
sigmoid activation function shown in Figure 1.3 on page 5. When inputs
are restricted to this range the sigmoid function is more or less linear.
The network has found a solution which exploits the linear component
of the sigmoid curve! In other words, it has effectively turned the nonlin-
ear unit into a linear unit by suitable selection of weights and bias.

Exercise 6.7

• You should be able to crack this one on your own! However, if you expe-
rience difficulties finding a configuration of training parameters for the
problem with 2 hidden units try a random seed of 6 (without replace-
ment), a learning rate of 0.3 and a momentum of 0.9.

Exercise 6-8

• If the network makes larger errors on some of the input patterns than
others, then it probably hasn’t learned the appropriate generalization but
some other function.

Exercise 6.9

1. It is quite easy to think up a solution to this problem using just 2 hidden
units. One hidden unit can have a negative bias that keeps it switched off
unless there are two active input units. This hidden unit can be con-
nected to the output with a positive connection. The second hidden unit
should have a negative bias that keeps it switched off unless there are 3
or more active input units. However, the connection from this unit to the
output is large and negative to counteract the activity propagating from

134 CHAPTER 6

the first hidden unit. Under these circumstances, the output unit will
only fire when exactly 2 input units are active. A simple network like
this is shown in Figure 6.7.

2. The solution that your network found by itself might look like that in
Figure 6.8. In this example, the first hidden node remains firmly off
unless there are at least 3 active input lines. Once this node becomes
active, its negative connection to the output node ensures that output is
switched off too. The second hidden node has a strong positive bias and
remains switched on if there are less than 2 active input lines (note the
negative connections between the input nodes and the second hidden
node). If the second node is switched on, the strong negative connection
to the output node makes sure that the output node is switched off. In
other words, the output node is switched off if there are at least 3 or less
than 2 active nodes at the input. If there are just 2 active input nodes, the
second hidden node switches off but the first hidden node doesn’t switch
on. In other words, both hidden nodes are dormant allowing the positive
bias on the output node to activate it. This solution is quite different to
the hand-wired solution in Figure 6.7.

FIGURE 6.7 A hand-wired network for solving the categorization problem.

1.0
1.0

1.0 1.0
1.0 1.0

1.0

-8.04.0

-2.0 -3.0

-0.5

1.0

 Generalization 135

Exercise 6.10

• The cluster analysis of the input patterns groups them together as best it
can according to their position in the four dimensional input space. So
the pattern 1011 is closer to the pattern 1111 than it is to the pattern
0000. This grouping is not relevant to the task that the network is being
asked to perform. For example, the network is supposed to group 0011
together with 1100 but these patterns are quite far apart in the four
dimensional input space (see Figure 6.4).

Exercise 6.11

• The cluster analysis of the hidden unit activations using the network
shown in Figure 6.8 is given in Figure 6.9. Now the network has
grouped together all the patterns in which just two input nodes are active
(the middle branch of the tree). All patterns with just one input node are
placed in the first branch of the tree. Patterns with 3 or 4 input nodes
active are placed in the third branch of the tree. This organization corre-
sponds exactly to the activities of the hidden nodes that we analyzed in
Exercise 6.9.

FIGURE 6.8 A self-organized solution to the categorization problem.

4.1
-4.5

3.9 -4.5 4.3 -5.6

-4.5

-10-10

-10.4 6.2

4.7

3.9

136 CHAPTER 6

FIGURE 6.9 Cluster analysis of the hidden unit activations in the
generalization problem

