
Introduction

In this chapter you will examine the ability of the network to detect
patterns which may be displaced in space. For example, you will
attempt to train a network to recognise whenever a sequence of three
adjacent 1’s occurs in a vector, regardless of what other bits are on or
where the three 1’s are. Thus, 01110000, 00011100, 10101111 all
contain this pattern, whereas 01100000, 10101010, 11011011 do
not.

Why might such a problem be of interest? This task is schematic
of a larger set of problems which we encounter constantly in everyday
life and which are sometimes referred to as examples of translation
invariance. When we recognize the letter A on a page, or identify
other common objects regardless of their spatial location, we have
solved the problem of perceiving something which has undergone a
spatial translation. (We can also usually perceive objects which have
been transformed in other ways, such as scaling, but here we address
only displacement in space.) We carry out such recognition without
apparent effort, and it probably does not even occur to us that a pat-
tern which has been moved in space ought to be particularly difficult
to recognize.

In fact, dealing with spatial translations is quite difficult for many
visual recognition schemes, and we will find that it is also hard for
networks. You will look at one solution, but first you will demonstrate
that the problem is hard and try to understand just what the basis of
the difficulty is.

In this chapter, you will learn:

CHAPTER 7 Translation
invariance

138 CHAPTER 7

• How to configure a neural network so that its hidden nodes have con-
strained receptive fields (instead of receiving connections from all the
units in the previous layer).

• Show that receptive fields and unit groupings are important for solving
the problem of translation invariance in a neural network.

Defining the problem

Create a New Project called shift. Build an 8x6x1 network. The
training set should contain the following patterns (remember that the
vector elements in shift.data should have spaces between them:

11100110 11101001 01110101 01110000
10111011 00111010 11011100 01011101
01101110 10001110 10010111 00100111

10011010 11001101 10000010 01001100
01000000 01101000 00100011 10100100
00110110 10010110 10011000 00010000
00011011 00010001 01010000 01011011
00000100 00001101 00000011 00001001

Be sure you have entered these patterns exactly. Check your files!
Of the 32 patterns, the first 12 contain the target string 111, while

the last 20 do not. Thus, your shift.teach file will have 1 as out-
put for the first 12 patterns and 0 for the last 20. Try running the sim-
ulation with a learning rate of 0.3 and a momentum of 0.9 for 200
epochs (this means 6400 sweeps). Be sure to choose the Train
Randomly option. Feel free to experiment with these parameters. Test
the network on the training data.

Exercise 7.1

• Has the network learned the training data? If not, try
training for another 200 epochs or run the simula-
tion with a different random seed.

 Translation invariance 139

Now test the network’s ability to generalize. Create a new data file
containing novel patterns (call it novshift.data) using the follow-
ing eight input patterns, four of which contain the target string and
four of which do not.

00000111 11100100 11101100 01110011
10110001 10001101 11011011 01101101

Test the network’s response to these novel patterns:

Relative and absolute position

In the previous simulation you saw that although it is possible to train
the network to correctly classify the training stimuli, the network does
not generalise in the way you want. Note that this does not mean that
the network failed to find some generalisation in the training data,
simply that the generalisation was not the one you wanted.

It is important to try to understand why spatial translation is such
a difficult problem. The basic fact to be explained is that although bit
patterns such as 111000000 and 000111000 look very similar to us,
the network sees them as very different. The absolute bit pattern (e.g.,
whether the first three bits are 0 or 1) is a more important determinant
of similarity than the relative bit pattern (e.g., whether any three adja-
cent bits are 0 or 1).

One way to think about why this might be so is to realize that
these bit patterns are also vectors, and that they have geometric inter-
pretations. A 9-bit pattern is a vector which picks out a point in 9-

Exercise 7.2

1. How well has the network generalized? Use the
clustering procedure you learned in Chapter 6 on the
hidden node activation patterns of the training (not
test) data.

2. Can you tell from the grouping pattern something
about the generalization which the network has
inferred?

140 CHAPTER 7

dimensional space; each element in the vector is responsible for locat-
ing the point with regard to its own specific dimension. Furthermore,
the dimensions are not interchangeable.

Consider a concrete example. Suppose we have a 4-element vec-
tor. To make things a bit easier to imagine, we will establish the con-
vention that each position in the vector stands for a different compass
point. Thus, the first position stands for North, the second for East,
the third for South, and the fourth for West. We will also let the values
in the vector be any positive integer. We might now think of the fol-
lowing vector: 1 2 1 1 as instructions to walk North 1 block, then
East 2 blocks, South 1 block, and West 1 block. Consider the 4x4 city
block map shown in Figure 7.1 and start in the lower left corner and
see where you end up.

Now let us rotate the numbers in this vector, so that we have
something that looks similar (to our eye): 2 1 1 1. However,—and
this is important—we keep the convention that the first number refers
to Northern movement, etc. Now we have a different set of instruc-
tions. Start again in the lower left corner and see where you end up
this time. Not surprisingly, it’s a different location. You are probably
not surprised because it is obvious that going 2 blocks North and then
1 block East is different from going 1 block North then 2 blocks East.

FIGURE 7.1 A geometric interpretation of input vectors

x

 Translation invariance 141

The situation with the network is similar. Each position in a vector
is associated with a different dimension in the vector space; the
dimensions are analogous to the compass points. The vector as a
whole picks out a unique point.

When the network learns some task, it attempts to group the
points which are picked up by the input vectors in some reasonable
way which allows it to do the task. (Thinking back to the city-block
metaphor, imagine a network making generalizations of the form “all
points in the north-west quadrant” versus “points in the south-east
quadrant.”) Thus, the geometric interpretation of the input vectors is
not just a useful fiction; it helps us understand how the network actu-
ally solves its problems, which is by spatial grouping.

You can now see why shifts or translations in input vector patterns
are so disruptive. You can shift the numbers around, but you cannot
shift the interpretation (dimension) that is associated with each abso-
lute position. As a result, the shift yields a vector which “looks” very
different to the network (i.e., picks out a different point in space) even
though to the human eye the two patterns might seem similar.

These shifts do not necessarily make it impossible for the network
to learn a task. After all, in the previous simulation the network suc-
ceeded in classifying various instances of shifted …111… patterns.
XOR is another problem which is successfully learned by the network
even though the vectors which have to be grouped are as different as
possible (think about the locations of the points picked out in a square
by 00, 11, 01, 10, and the groupings that are necessary for the task).
The network can overcome the dissimilarity. (The spatial contortions
necessary to do this, however, usually require a hidden layer; the hid-
den layer takes on the job of reorganizing the spatial structure of the
input patterns into a form which facilitates the task.) The point is that
the classification solution is not likely to generalize to novel patterns,
just because what seemed like the obvious basis for similarity to us
(three adjacent 1’s) was for the network a dissimilarity which had to
be ignored.

Again, it is worth thinking about why this problem might worry
us. Many human behaviors—particularly those which involve visual
perception—involve the perception of patterns which are defined in
relative terms, and in which the absolute location of a pattern in space
is irrelevant. Since it is the absolute location of pattern elements
which is so salient to the networks you have studied so far, you now
want to see if there are any network architectures which do not have

142 CHAPTER 7

this problem. In the next simulation, you will study an architecture
which builds in a sensitivity to the relative form of patterns. (This
architecture was first described by Rumelhart, Hinton & Williams,
(Chapter 8, PDP Vol. 1) and used in the task of discriminating T from
C, regardless of the orientation and position of these characters in a
visual array. You may wish to review that section of the chapter before
proceeding.)

Receptive fields

Your guiding principle in creating an architecture to solve the shift
invariance problem will be this: Build as much useful structure into
the network as possible. In other words, the more tailored the network
is to the problem at hand, the more successful the network is apt to be
in devising a solution.

First, you know that the pre-defined target string is exactly three
units in length. Therefore, design your network so that each hidden
node has a receptive field spanning exactly three adjacent input nodes.
Hidden nodes will have overlapped receptive fields, staggered by one
input. This means that if 111 is present at all in the input, one of the 6
hidden units will receive this as its exclusive input, and the two neigh-
boring hidden units on each side will receive part of the pattern as
their input (the hidden unit immediately to the left sees two of the 1’s,
and the unit beyond that sees only one).

Now what about the issue of shift invariance? Each receptive field
has a hidden unit serving it exclusively. (For more complicated prob-
lems, we might wish to have several hidden units processing input
from a receptive field, but for the current problem, a single unit is suf-
ficient.) Let us designate the receptive field weights feeding into a
hidden unit as RFW1, RFW2, and RFW3 (Receptive Field Weight 1
connects to the left-most input, RFW2 to the center input, and RFW3
to the right-most input). We have 6 hidden units, each of which has its
own RFW1, RFW2, and RFW3. We can require that the RFW1’s for
all 6 hidden units have identical values, that all RFW2’s be identical,
and all RFW3’s be identical. Similarly, the biases for the 6 hidden
units will also be constrained to be identical. Thus, 11100000 will
activate the hidden node assigned to the first receptive field in exactly

 Translation invariance 143

the same way that 01110000 will activate the hidden node assigned
to the second receptive field. Finally, since all 6 hidden units are func-
tionally identical, we want the weights from each hidden unit to the
output unit to be identical. Figure 7.2 shows the architecture we have
just described.

How can we ensure that this occurs? Our solution will be to ini-
tialize each receptive field hidden unit to have an identical set of
weights (compared with other units), and then to average together the
weight changes computed (according to the backpropagation learning
algorithm) for each connection and to adjust each such weight only by
the average change for that position. Fortunately, the tlearn simula-
tor has an option that will perform the necessary averaging automati-
cally, but it is still necessary to tell the program which weights are to
be made identical. To do this, we need to employ the groups option
in the .cf file. All connections in the same group are constrained to
be of identical strength.

The NODES:, CONNECTIONS: and SPECIAL: entries for the
.cf file that you will need for this exercise are shown in Figure 7.3.
Notice how each connection or set of connections is identified as
belonging to one of 5 groups. The changes made to one weight will be
the average of the changes computed by backpropagation for all the

FIGURE 7.2 Network architecture for the translation invariance problem

RFW1

RFW2

RFW3

all weights from hidden units to output are identical

144 CHAPTER 7

weights with which it is grouped. (We have formatted this file in three
columns; in the real file, the material shown in the CONNECTIONS:
column would immediately follow the NODES: section, etc.)

FIGURE 7.3 shift2.cf file for translation invariance problem.

Exercise 7.3

1. Draw a diagram of the 8x6x1 network, and indi-
cate those weights and biases which are constrained
to be identical. Check this with the way that tlearn
has configured the network.

2. Train the network for 2000 epochs (64,000 sweeps)
with a learning rate of 0.3 and momentum of 0.9.
(Use random pattern selection.) Has the network
learned the training set? If not, try training the net-
work with a different random seed.

NODES:
nodes = 7
inputs = 8
outputs = 1
output node is 7

CONNECTIONS:
groups = 5
1-6 from 0 = group 1
7 from 0
7 from 1-6 = group 2
1 from i1 = group 3
1 from i2 = group 4
1 from i3 = group 5
2 from i2 = group 3
2 from i3 = group 4
2 from i4 = group 5
3 from i3 = group 3
3 from i4 = group 4
3 from i5 = group 5
4 from i4 = group 3
4 from i5 = group 4
4 from i6 = group 5
5 from i5 = group 3
5 from i6 = group 4
5 from i7 = group 5
6 from i6 = group 3
6 from i7 = group 4
6 from i8 = group 5

SPECIAL:
selected = 1-6
weight_limit = 0.1

 Translation invariance 145

The fact that you have successfully trained this new network on
the training data does not necessarily imply that the network has
learned the translation invariance problem. After all, we saw that the
8x6x1 network in the first part of this chapter (the shift project)
also learned the training data; crucially, its failure to generalize in the
way we wanted was what told us that it had not extracted the desired
regularity. (It’s worth pointing out again that the network has undoubt-
edly generalized to some function of the input, but simply not to the
one we wished.) Therefore you must test this network with new data.

It is possible that on the first attempt, your network may not have
generalized correctly (but this is not common); if it fails, retrain with
a different starting seed.

Finally, it is worth looking at the network to try to understand its
solution. This involves examining the actual weights and drawing the
network, with weight values shown, in order to determine what the
network’s solution is. When you do this, work backwards from the
output unit: Ask yourself under what conditions the output unit will be
activated (indicating that the target pattern of . . .111. . . was found).
Take into account both the output unit’s bias and the activation
received from the 6 hidden units. Then ask what input patterns will
cause the hidden units to be activated, and what input patterns will
cause them to turn off.

Exercise 7.4

• When you have successfully trained the network,
test its ability to generalize to the novel test patterns.
Has the network generalized as desired?

Exercise 7.5

• Examine the contents of the weight file. Draw out
the weights for one hidden node, the weight con-
necting it to the output unit, and the biases for the
hidden unit and output unit. (These should be
identical across different hidden units). Do you
understand the network’s solution?

146 CHAPTER 7

Answers to exercises

Exercise 7.1

• It may take a few attempts, but generally this network will succeed in
learning the training data after a few attempts. If the network has learned
the correctly, the first 12 outputs will be close to 1.0 (but values as low as
0.70 may be acceptable) and the last 20 outputs will be close to 0.0
(again, actual outputs will only approximate 0.0).

Exercise 7.2

1. The first four patterns in novshift.data all contain the . . .111. . .
pattern, whereas the last four do not. If the network has generalized as
desired, then the first four outputs will be close to 1.0 and the final four
will be close to 0.0. This is not likely to be the case. (It is barely possible
that your network, by chance, stumbles on the solution you want. If so, if
you run the network another four or five times with different random
seeds, you are not likely to replicate this initial success.)

To do the clustering on the training data hidden unit patterns, you
will need to go back to the Network menu, and in the Testing
Options. . . submenu and for the Testing set, select Training set
[shift.data]. Then, again in the Network menu, choose Probe
selected nodes. This will run the network once more, sending the hid-
den unit outputs to the Output display window. Delete any extraneous
material you have in the Output display and in the File menu, use Save
As. . . to save the hidden unit activations in a new file called
shift.hidden. Before clustering, you will also need to prepare a
labels file (called shift.lab) which is identical to shift.data,
but with the first two (non-pattern) lines removed, and with all spaces
deleted. (Since this can be cumbersome, we have already prepared a file
with this name and placed in the folder for Chapter 7.) If you now run
the Cluster Analysis (found in the Special menu; send output to
graphics), you might see something that looks like Figure 7.4:

 Translation invariance 147

2. Notice that all the patterns which contain . . .111. . . are clustered
together on the same branch; this tells us that the hidden unit patterns
produced by these inputs are more similar to each other than to any other
inputs. That is what allows the network to treat them the same (i.e., out-
put a 1 when they are input). However, if you look closely, you may also
see that the principle by which inputs are grouped appears to have more
to do with the degree to which patterns share 1’s and 0’s in the same
position. This is particularly apparent for patterns (a) and (b), and pat-
terns (c) and (d). The fact that inputs which do not contain the . . .111. . .
target pattern also happen to have many 0’s in their initial portions—
and that it is this latter feature which the network is picking up on—

FIGURE 7.4 Cluster analysis of the hidden unit activations on the shift problem

(a)
(b)

(c)
(d)

148 CHAPTER 7

should lead us to predict (correctly) that the network would classify the
novel test pattern 00000111 on the basis of the initial 0’s, and ignore
the fact that it contains the target.

Exercise 7.3

1. After having drawn your network, display the architecture using the
Network Architecture option in the Displays menu. You will see a
diagram which looks like that shown in Figure 7.5.

2. We train the network for 2000 epochs simply to ensure that the weights
have converged on relatively stable values. This will produce cleaner
outputs and make subsequent analysis of the network a bit easier.

FIGURE 7.5 Translation invariance network architecture

 Translation invariance 149

Exercise 7.4

• The network should have generalized successfully so that it recognizes
the first four patterns in novshift.data as containing the target
(i.e., the network output is close to 1.0), and the last as not containing the
target (i.e., the output is close to 0.0). If this is not the case, retrain the
network using a different random seed, or experiment with different val-
ues for the learning rate and momentum.

You may find it useful to keep the Error Display active while you
are training. If you see that the error does not appear to be declining after
a while, you may choose to abort the current training run prematurely
and restart with different values. After a while, you may begin to develop
a sense of what error plots will ultimately lead to success and which ones
are destined to result in failure.

Exercise 7.5

• Figure 7.6 shows the receptive field weights for one hidden unit. (All
other input-to-hidden and hidden-to-output weights should be the same.)
The biases are shown within each unit.

Working backwards, we note that the output unit has a strong posi-
tive bias. By default, then, it will be on (signalling detection of the target
pattern). So we then have to ask the question, What will turn the output
unit off? We see that the input which the output unit receives from the 6
hidden units is always inhibitory (due to the weight of -8). However, the
output unit’s bias is sufficiently large (43) that all of the hidden units
must be activated in order for their combined effect to be great enough to
turn off the output (since -8x5 generates only -40). But if we look at the
hidden units’ biases, we see that they are strongly positive (14). This
means that by default the hidden units will be activated. The hidden
units’ default function is therefore to suppress firing of the output. Over-
all, the default case is that the output says there is no target present.

What will cause the output unit to fire, then? If a single hidden unit
is turned off, then the remaining hidden units’ output will not be suffi-
cient to turn off the output unit and it will fire, indicating detection of the
target. So what can turn off a hidden unit? Since the hidden unit bias is
14, and each input weight has an inhibitory weight of -5, all three inputs
must be present to turn off a hidden unit, which then releases the output

150 CHAPTER 7

unit from suppression and turns it on. If two or fewer adjacent inputs are
present, they will be insufficient to turn off the hidden unit.

This may seem complicated at first, but it actually is a very sensible
solution!

FIGURE 7.6 Receptive field weights for a hidden unit in the translation invariance
network

-5 -5 -5

-8

43

14

