
Introduction

In Chapter 7, you trained a network to detect patterns which were dis-
placed in space. Your solution involved a hand-crafted network with
constrained weights (so that different hidden nodes could benefit from
the learning of others). Now turn your attention to the problem of
detecting patterns displaced in time.

This problem requires a network architecture with dynamic prop-
erties. In this chapter, you’ll follow the approach of Elman (1990)
which involves the use of recurrent connections in order to provide
the network with a dynamic memory. Specifically, the hidden node
activation pattern at one time step will be fed back to the hidden nodes
at the next time step (along with the new input pattern). The internal
representations will, thus, reflect task demands in the context of prior
internal states. An example of a recurrent network is depicted in
Figure 8.1.

In this chapter, you will:

• Train a recurrent network to predict the next letter in a sequence
of letters.

• Test how the network generalizes to novel sequences.

• Analyze the network’s method of solving the prediction task by
examining the error patterns and hidden unit activations.

CHAPTER 8 Simple recurrent
networks

152 CHAPTER 8

File configuration

Starting on the Training Data

Imagine a letter sequence consisting of only three unique strings:

ba dii guuu

For example, part of the sequence might look like this:

babaguuudiiguuubadiidiibaguuuguuu…

Note that the sequence is only semi-random: the consonants occur
randomly, but the identity and number of the following vowels is reg-
ular (i.e., whenever a d occurs, it is always followed by exactly two
i’s). If we trained a dynamic network to predict successive letters in
the sequence, the best we could expect would be for the network to
say that all three consonants are equally likely to occur in word-initial
position; but once a consonant is received, the identity and number of
the following vowels should be predicted with certainty.

A file called letters exists in your tlearn folder. It contains a
random sequence of 1000 words, each ‘word’ consisting of one of the

FIGURE 8.1 A simple recurrent network.

Context NodesInput Nodes

Output Nodes

Hidden Nodes

 Simple recurrent networks 153

3 consonant/vowel combinations depicted above. Open… the let-
ters file. Each letter occupies its own line. Translate these letters
into a distributed representation suitable for presenting to a network.
Create a file called codes which contains these lines:

b 1 1 0 0
d 1 0 1 0
g 1 0 0 1
a 0 1 0 0
i 0 0 1 0
u 0 0 0 1

Now with the letters file open and active, select the Translate…
option from the Edit menu. The Translate dialogue box will appear as
shown in Figure 8.2. Set the Pattern file: box to codes and check that

the Direction of Translation is from left to right. Then click on Trans-
late. Your letters file is translated into rows and columns of binary
digits. (Note that both the letters and codes files must be in the
same directory or folder.) Each row consists of one of the sequences
of 4 digits taken from the codes file. Translate has replaced every
letter in the letters file with a pattern vector. Every occurrence of a
letter in the letters file which corresponds with a letter in the first

FIGURE 8.2 The translate dialogue box.

154 CHAPTER 8

column of the codes file is replaced by the sequence of alphanumeric
characters to the right of the first column in the codes file1. tlearn
asks you for the name of file in which to save the translated data. To
avoid overwriting the existing letters file, call it srn.data. Next
copy this file to a file called srn.teach and edit the file, moving the
first line to the end of the file. The srn.teach file is now one step
ahead of the srn.data file in the sequence. Complete the teach
and data files by including the appropriate header information.

Now build a 4x10x4 network with 10 context nodes. These spe-
cial context nodes will store a copy of the hidden node activation pat-
tern at one time step and feed it back to the hidden nodes at the
subsequent time step (along with the new input). The srn.cf file is
shown in Figure 8.3. Notice that the context nodes are specified as
nodes 15-24 and are set as linear in the SPECIAL: section.

Nodes 1-10 receive connections from the context nodes. However,
the context nodes also receive connections from nodes 1-10 (last line
of the CONNECTIONS: section). This line also indicates that these
‘copy-back’ connections have a minimum & maximum value of 1.0,

1. Notice that you could translate your transformed file back again if you wish by
using the alternative Direction of Translation in the Translate… dialogue box.

FIGURE 8.3 The srn.cf file.

 Simple recurrent networks 155

that they are fixed and that they are in a one-to-one relation to each
other, i.e., node 1 sends a connection only to node 15, node 2 only
sends a connection to node 16, etc.

You are now in a position to train the network. However, before you
do so you may as well create a set of patterns for testing after you
have trained the network.

Exercise 8.1

1. Why are the the hidden nodes and the context nodes
fully connected in one direction but not in the other?
Why do you think the context nodes are set to be lin-
ear?

2. Draw a diagram of your network. You may wish to
use slabs to indicate layers (rather than drawing
individual nodes). Indicate those weights which are
fixed at 1.0.

Exercise 8.2

1. What patterns would you include in your test set?
Construct the test set and call it
predtest.data.

2. Set the learning rate parameter to 0.1 and momen-
tum to 0.3. Train the network for 70,000 sweeps
(since there are 2993 patterns in srn.data, this is
approximately 23 epochs), using the Train sequen-
tially option in the Training Options dialogue box.
It is imperative that you train sequentially and not
train randomly. Why?

3. To see how the network is progressing, keep track of
the RMS error. Why do you think the RMS error is
so large?

156 CHAPTER 8

Run through these test patterns again but plot a graph of the error as
the network processes the test file. To do this you will need to con-
struct a predtest.teach file and make sure that the Calculate
error box is checked in the Testing options… dialogue box. You
should be able to see how the error declines as more of a word is pre-
sented. Thus, error should be initially low (as we predict an a follow-
ing the first b, then increases when the a itself is input and the
network attempts to predict the beginning of a new sequence.

Furthermore, if you look at the bit codes that were used to repre-
sent the consonants and vowels, you will see that the first bit encodes
the C/V distinction; the last three encode the identity of the letter.
When individual output bits are interpretable in this way, you might
wish to look not only at the overall error for a given pattern (the sum-
squared error across all bits in the pattern) but at the errors made on
specific bits.

4. Test the network using the predtest.data file.
How well has the network learned to predict the next
element in the sequence? Given a consonant, does it
get the vowel identity and number correctly?

5. What does it predict when a consonant is the next
element in the stream?

Exercise 8.3

1. What do you notice about the network’s ability to
predict the occurrence of a vowel versus a consonant
as opposed to specific vowels and consonants?

2. Finally, investigate the network’s solution by exam-
ining the hidden node activation patterns associated
with each input pattern. Perform a cluster analysis
on the test patterns. Can you infer something from
the cluster analysis regarding the network’s solu-
tion?

Exercise 8.2

 Simple recurrent networks 157

Answers to exercises

Exercise 8.1

1. The downward connections from the hidden units to the context units
are not like the normal connections we have encountered so far. The pur-
pose of the context units is to preserve a copy of the hidden units’ activa-
tions at a given time step so that those activations can be made available
to the hidden units on the next time step. So what we need, therefore, is
a mechanism which will serve to copy, on a one-to-one basis, each of the
hidden unit’s activations into its corresponding context unit. We do this
by setting up downward connections which are one-to-one and fixed
(i.e., not changeable through learning) at a value of 1.0. That ensures
that the input to each context unit is simply the activation value of its
“twin” hidden unit. In addition, we define the context units themselves
to have linear activation functions. This means that their activation is
simply whatever is input to them, without undergoing the squashing
which occurs with units which have (the normal) logistic activation
function. The result is that the context unit preserves the value exactly.

2. Your network should look like the one shown in Figure 8.4. We have
used slabs to indicate banks of units to avoid clutter. “Distributed”
means that all units from one layer are connected to all other units in the
second layer; “one-to-one” means that the first unit in one layer is con-
nected only to the first unit in the second layer, etc.

Exercise 8.2

1. What we wish to verify is that the network has learned (a) that each con-
sonant is itself unpredictable, and so should predict all three equally
likely, whenever a consonant is expected; and (b) that each consonant
predicts a specific vowel will occur a certain number of times. To do
this, we need a test set which contains one occurrence of each possible
‘word’, e.g., the sequence b a d i i g u u u. As with the train-
ing data, you will have to be sure to use the Translate… option from

158 CHAPTER 8

the Edit menu to convert the letters to vector form. Or, since there
are such a small number of patterns involved, you could create the
vectors by hand (just be sure not to make mistakes!).

2. The whole point of this chapter is that there are sequential dependencies
in the data. Obviously, then, if the network is to learn these sequential
dependencies, it must experience the data in their correct sequence. Ran-
dom pattern presentation would mean that a d might sometimes be fol-
lowed by an i, other times by an a, or u, or even another consonant.
Train sequentially ensures that the network sees the patterns in their
correct order, as they appear in the .data file.

3. In Figure 8.5 we show the error after 70,000 sweeps of training. From
the fact that the error has not declined very much and asymptotes at a
relatively high level, we might think that the network has not learned
much. And in many cases, this would be a reasonable conclusion.

But there is another possibility to consider before we give up in
despair. Remember that the training data are only partially predictable.
In fact, there are two things which the network can learn. (1) Once it
sees a consonant, the identity and number of occurrences of the vowel
that follows can be predicted with certainty; (2) a corollary of knowing

FIGURE 8.4 Schematic of network for the letter prediction task

i1 i2 i3 i4

distributed and learnable

one-to-one and fixed at 1.0

distributed and learnable

distributed and learnable

units 1-10 (hidden)

units 11-14 (output)

units 15-24 (context)

 Simple recurrent networks 159

the number of vowels which follows is that the network can know when
to expect a consonant. However, the identity of the consonants them-
selves has been chosen at random. So—unless the network memorizes
the training set (which is not likely)—we have given the network a task
which inevitably will continue to generate error. Since the error plot
averages the error over 100 sweeps and shows a data point only once
every 100 sweeps, we are actually combining the error when vowels
occur (which should be low) with the error when consonants occur
(which should be high). Overall, the average declines as the network
learns to get the vowels right; but since it can never predict the conso-
nants, the error can never go to 0.0.

4. When you test the network, the output will be shown in vector form. To
interpret this output, you will have to consult the codes file (shown
also on page 153) and work backwards2: Find the letter which most
closely resembles the vector output from the network. Remember that
the network’s output is a prediction of what the next letter will be, so the
very first line should be similar to the second letter in the
predtest.data file, which is an a, coded as 0 1 0 0.

FIGURE 8.5 RMS error for the letter prediction task over 70,000 sweeps

160 CHAPTER 8

5. After the last vowel in a sequence has been input, the network prediction
should be wrong—it may look something like one of the consonants, but
the precise identity should not be correct.

Exercise 8.3

1. We can define Vowel as any vector with a 0 in the first position, and
Consonant as any vector with a 1 in the first position (just because that
is the way we set up the vectors in the codes file to begin with). So
now let us look to see what the network is predicting, concentrating only
on the first bit position. In one of our own runs, this is what we got (the
vowel which should be predicted is shown in parentheses to the left):

Even though the network isn’t able to predict which consonant to
expect, it does clearly know when to expect some consonant, as evi-
denced by a high activation on the first bit.

2. To do a cluster analysis of the hidden unit activations produced by the
inputs in predtest.data, we need first to clear the Output display
(if it is open) (in the Edit menu, Select All), and then in the Network
menu, Probe selected nodes. This will place the hidden unit activa-
tions in the Output display. With that window active, go into the Edit
menu and Save As... a file called predtest.hid. This will be the

2. There is also an Output Translation… utility available in the Special menu and
described in Appendix B (page 263 and page 289) which can be used to read output
vectors as letters. An example of the use of the Output Translation… utility is
described in Chapter 11 on page 212.

(a) 0.000 0.969 0.083 0.004
(d) 0.977 0.345 0.409 0.220
(i) 0.000 0.019 0.985 0.005
(i) 0.006 0.031 0.919 0.039
(g) 0.987 0.444 0.224 0.331
(u) 0.000 0.013 0.010 0.984
(u) 0.001 0.008 0.039 0.979
(u) 0.138 0.099 0.065 0.853
(b) 0.995 0.417 0.512 0.132

 Simple recurrent networks 161

vector file we cluster. We will also need a Names file, which we can
create by hand and call predtest.lab. This file should consist of
the inputs which produced the hidden unit activations, i.e., the letters
b a d i i g u u u, one per line. Since there are several instances
of some of the vowels, we might wish to mark them individually, e.g.,
b a d i1 i2 g u1 u2 u3 so that we can tell them apart on the
plot. Then choose Cluster Analysis from the Special menu, checking
Output to Graphics. When we did this, this is the plot we got:

At first, some aspects of this plot may appear a bit odd. For
instance, why should the hidden unit patterns when a g is input be simi-
lar to u? And why should the hidden unit patterns in response to a, i2,
and u3 be similar to each other (as shown in the bottom branch)?

One thing to remember is that the network’s task is prediction. We
might expect it, therefore, to develop similar hidden unit patterns when
it has to predict similar outputs. Viewed this way, in terms of what each
of the inputs above predicts, the clustering makes much more sense. The
a, i2, and u3 in the bottom branch all have something very important

FIGURE 8.6 Cluster analysis of the hidden unit activations for letters in the predic-
tion task

162 CHAPTER 8

in common: They are the final vowels in their subsequence. When the
network encounters any a, it knows that a consonant should follow. Sim-
ilarly, when the network encounters the second i or third u in a
sequence, the next letter will be a consonant. In the second branch from
the bottom, the g, u1, and u2, all predict a u. And the b at the top is dif-
ferent from all other letters because it alone predicts a following a. So
the network’s internal representations reflect what it has learned about
the classes of inputs with regard to what they predict.

