
Introduction

An intriguing phenomenon in the developmental literature is the
observation that many children undergo what appear to be two distinct
phases in generalization. In the first stage, they are able to generalize
to novel instances, but the generalizations are in some sense restricted
to the types of data they have encountered. In the second stage, the
generalization ability is unbounded.

For instance, Karmiloff-Smith has noted that children will often
undergo a phase where they can demonstrate partial mastery of the
principle of commutativity. They know that 2+5 is the same as 5+2,
and are able to extend this to other sums which are similar in the sense
of involving small numbers (e.g., 7+3, 8+4, etc.). They will fail to rec-
ognize, however that 432+85 is the same as 85+432. Thus they are
able to generalize a basic notion of commutativity, but the generaliza-
tions are limited to sums which may be novel, but which must closely
resemble the sums they have encountered before.

At a later stage, of course, children (and adults) recognize that for
any arbitrary pair of numbers, their sum is the same regardless of their
serial order. At this stage—“true generalization”—the principle of
commutativity seems to exist independently of the examples through
which it was learned. This is a level of abstraction which seems to be
qualitatively different from the knowledge possessed at the earlier
stage.

It is not apparent at first glance that a neural network might
exhibit behavior which is similar. Neural networks frequently are able
to learn functions, and these can then be applied to novel data. A pri-

CHAPTER 9 Critical points in
learning

164 CHAPTER 9

ori, however, one might expect the level of generalization to be a
graded and continuous phenomenon which increases smoothly with
experience. One would not necessarily expect the sort of two-stage
behavior which is observed in children. This is an important issue,
because networks use learning devices which operate continuously in
time. That is, the learning mechanism does not change. In children, on
the other hand, the appearance of dramatic changes in behavior is
often taken as evidence for a qualitative change in the underlying
learning mechanism (e.g., through reorganization, reanalysis, rede-
scription, etc.).

Surprisingly, such behavior can be observed in networks. Net-
works can undergo qualitative changes in their performance of just the
sort which are demonstrated by children who are learning commuta-
tivity.

In the following simulation you will explore the generalization
ability of a network over the time course of its learning a function.
Rather than teaching the network commutativity, you will teach it to
tell the difference between ‘odd’ and ‘even’ (the parity function,
extended over time). You will find that the network shows two kinds
of generalization which closely resemble the phases observed in chil-
dren. Furthermore, you will localize the “magic” point in time where
the first type of generalization gives way to the second.

The task

In this task, you will present the network with short sequences of 1’s
and 0’s. Each bit is presented one at a time; the network’s task is—at
each point in time—to tell you whether an odd or even number of 1’s
has been input. Sequences will randomly vary in length between 2 and
6. After each sequence is done, the network will be reset (the activa-
tions of the context nodes set to 0) and you will start with a new
sequence. For example (/ marks the end of a sequence and beginning
of the next):

input: 1 1 0 1 / 0 0 / 0 1 0 0 1 0 / 1 1 1 …
output: 1 0 0 1 0 0 0 1 1 1 0 0 1 0 1 …

 Critical points in learning 165

In the tlearn folder there are three files called teach, data and
reset. data contains the input sequence consisting of 1000 ran-
domly generated sequences; teach contains the teacher signal for
each input; and reset contains the list of numbers identifying
sequence beginnings (in the example above, the file would have 0,
4, 6, 12, etc.). When tlearn gets to the beginning of a new
sequence, it resets all the context units to 0.0, so that the prior state is
gone. Edit these files to create the files needed to run a simulation
with a recurrent network containing one input node, 3 hidden nodes
and 1 output node.

Call the project train1. You will also need to rename the reset file
to train1.reset. This file will need to be edited so that it contains
a header line—an integer specifying the number of time stamps to fol-
low. Each time stamp is an integer specifying the time step at which
the context nodes are to be completely reset. The time stamps should
appear in ascending order.

Training the network

You will go through several passes of training the network. First, train
for about 10 epochs (which means 24880 sweeps). Use a
weight_limit of 0.1 and select the Use X-entropy; Log RMS
option in the Training Options… dialogue box. Set the learning rate
and momentum parameters to quite low levels (say, 0.05 and 0.2
respectively). After you have trained the network, you will have a new
file, called train1.24880.wts.

To test the network, create a data file which contains a single
sequence of 100 1’s. This is a convenient pattern because:

• It is by far longer than any sequence the network has encountered; you
can look to see at what point the network starts to fail.

• It will be easy for you to see visually how the network is doing.

Exercise 9.1

• How many context nodes will the network contain?

166 CHAPTER 9

The correct answer will be an alternating sequence of 1’s and 0’s (1 0
1 0 1 0), just because the sequence flip/flops back and forth between
beyond “odd” and “even.”

However, although we can see this output in the Output window,
tlearn does not currently have the capability of displaying the out-
put graphically; only the error can be graphed (in the Error Display
window). We can use the following trick to generate an error display
which actually shows what the output looks like. Create a teacher file
for the test sequence which consists of 100 1’s. This teacher file is not
actually the “correct” one (which would be an alternating sequence of
1’s and 0’s); however, if the network is actually producing the right
output (the alternating 1010. . . . sequence), then the error that will be
displaying with this teacher file will itself be an alternating sequence
of 0101. . . .1

If the network has not learned to generalize at least beyond the
longest training sequence (i.e., 6 inputs), repeat the training starting
from scratch, but using a different random seed.

What is cross-entropy, and why use it?

The cross-entropy measure has been used as an alter-
native to squared error. Cross-entropy can be used as
an error measure when a network’s output nodes can
be thought of as representing independent hypotheses
(e.g., each node stands for a different concept), and the
node activations can be understood as representing the
probability (or confidence) that each hypothesis might
be true. In that case, the output vector represents a
probability distribution, and our error measure—
cross-entropy—indicates the distance between what
the network believes this distribution should be, and
what the teacher says it should be.

There is a practical reason to use cross-entropy
as well. It may be more useful in problems in
which the targets are 0 and 1 (though the out-
puts obviously may assume values in between.)
Cross-entropy tends to allow errors to change
weights even when nodes saturate (which means
their derivatives are asymptotically close to 0).

1. For example, if the network is performing correctly, its first output is 1; this is
compared with the teacher file’s first pattern, which is 1, giving an error of 0. If the
network’s second output is 0, that is compared with the teacher file’s second pattern,
which is also 1, so the “error” is 1-0=1. Thus, what is displayed is not really the error,
but the network’s output subtracted from 1, which should—if the network has learned
the task—be an alternating sequence of 0101. . . .

 Critical points in learning 167

If all has gone well, you will find that a network trained for 10
epochs will generalize its odd/even knowledge to sequences longer
than 6, but not much longer. Eventually it gets lost and can’t keep
track of whether the longer sequence is odd or even. Note that the per-
formance gradually decays: the output activation is more clearly right
(close to 1.0 or 0.0) at the beginning, but gradually attenuates. None-
theless, there is some point at which it just doesn’t know.

(It is possible that you may find networks which either fail com-
pletely to learn at all, or succeed completely on the 100-item test
string. This reflects the ways in which different learning parameters
may interact with each other, as well as the initial random weights
generated by the seed you use. Catching the network at just the point
where it has partially learned may therefore take some time. If you
wish, you may use the weights file we provide in your tlearn folder;
this is called train1.demo.24880.wts. You can use this file for
testing purposes by selecting it as the weights file to load with the
Testing Options... menu. You can also use these weights as a starting
point for continued learning by loading them within the Training
Options... menu.)

Now repeat the training procedure from scratch. This time, train
for 15 epochs (37320 sweeps). (Again, if you have not gotten good

Exercise 9.2

1. Create suitable data and teacher files for your test
set, as described in the text. Do you need a reset
file for the test sequence?

2. Test the network, plotting the error in the Error Dis-
play. Use the trick described in the text (see
Footnote 1). How well has the network learned to
keep track of odd/even? For how many input bits is
it successful?

3. Has it gone beyond the length of the longest training
sequence?

4. Is there some point beyond which it fails?

5. How would you characterize the network’s generali-
zation performance?

168 CHAPTER 9

results with your own networks, use the one provided in
train1.demo.24880.wts.)

After 15 epochs of training the network should have learned to
make the odd/even distinction for the entire 100-bit test sequence. It
does so with great confidence: The activation of the output node
should look like a saw-tooth wave, swinging sharply between 1 to 0.

An interesting question now is how does the network go from the
first stage to the second? Is there a gradual increase in ability? Or is
the change abrupt?

In order to discover this, you would have to gradually hone in on
the point where the network change occurs. We know already that
generalization is incomplete at 10 epochs. We know that it appears to
be perfect at 15 epochs. However, to be sure, we should really test the
network with a much longer test sequence (e.g., a sequence of 1,000
consecutive 1’s). You would then have to (painstakingly) locate the
number of epochs where things change by training for different num-
bers of epochs, carefully picking your tests to locate the change point.
Thus, do a series of experiments in which you train for a number of
epochs, run your test, and examine the end of the test output
sequence. If the output is flat, you know the network has not learned
to generalize to 1,000 bits. If the output alternates and achieves stable
values, then you might surmise the network has learned to generalize
to at least 1,000 bits (and probably, it turns out, forever).

Exercise 9.3

1. How well has the network learned to keep track of
odd/even?

2. Is there some point beyond which it fails?

3. Has it learned to make the odd/even distinction for
the entire 100-bit test sequence?

4. How would you characterize the network’s generali-
zation performance?

 Critical points in learning 169

Exercise 9.4

• Whether or not you actually run the extended test in
order to localize the “turning point,” what do you
think happens at the point where the network shifts
from not being able to perform the task for any
length string, to the the state where it can? The per-
formance seems to exhibit a qualitatitive change. Is
this matched by an underlying change which is bet-
ter described as being qualitative or quantitative in
nature?

170 CHAPTER 9

Answers to exercises

Exercise 9.1

• Since context units are usually used to hold copies of hidden unit activa-
tions, there should be as many context units as hidden units; in this case,
that means 3.

Exercise 9.2

1. The point of the test sequence is to test the ability of the network to gen-
eralize to a very long string—in this case, a string of 100 1’s and 0’s.
Since the test pattern is one unbroken sequence, we do not need any
resets.

2. After training for 10 epochs, test the network with the test1.data
provided in the tlearn folder for Chapter 9, with the Error Display
window visible. You should see something like that shown in Figure 9.1.
Remember that we are using the trick (see Footnote 1) of subtracting
network output from 1. The correct response would be an alternating
sequence of 010... . which, when graphed, would look like a sawtooth
wave. We can count any value less than 0.5 as in the right direction when
the output should be 1.0 (and, similarly, as correct if the answer should
be 0.0 and the output is greater than 0.5). In our simulation, the net-
work’s output has this shape for the first 10 inputs. Your simulation
result might vary somewhat, but we would expect performance which is
roughly comparable to this.

If you fail to find a network which performs in this way, you may
choose to use the weights file we provide in the tlearn folder, called
train1.demo.24880.wts.

3. Since 10 inputs (speaking now of the first 10 which the network gets
right) is a longer sequence then the network has been trained on, the net-
work appears to have generalized beyond the training data.

4. The generalization is limited however. After 10 inputs the network loses
track of whether the sequence is odd or even; it goes “brain-dead” on the
11th input.

 Critical points in learning 171

5. The fact that the network succeeds in dealing with sequences which are
longer than those it has been trained on suggests that it has succeeded in
generalizing the odd/even function. There are two interesting respects in
which this generalization is limited, however. First, the generalization is
partial; the network gives approximately correct responses for longer
strings provided the length is not too great. Past some point (in our
example, the 11th input), the network fails. Second, if we interpret the
magnitude of the output as an indicator of the network’s “confidence,”
then it seems that as the test string increases in length, beyond that seen
in training, the network’s confidence decreases steadily. Thus, the gener-
alization is not only partial, but graded, diminishing as the input resem-
bles the training examples less and less.

FIGURE 9.1 Error curve for the temporal parity problem when tested after 10
training epochs

172 CHAPTER 9

Exercise 9.3

1. With 15 epochs of training the network should correctly respond to all
100 inputs. (If this is not true for you, load in the
train1.demo.24880.wts file we provide, and train for an addi-
tional 5 epochs—i.e., another 12,440 sweeps) using our weights file as
the starting point.)

2. The network should succeed for the entire 100 input test string. The
error we get is shown in Figure 9.2.

3. Yes, the network correctly keeps track of the odd/even distinction for the
entire test sequence.

4. This network has also learned to generalize, but the generalization
appears qualitatively different than when it only has 10 epochs of train-
ing. First, the network generalizes well beyond the length of the training
data. Second, the network’s output does not degrade with increasing
length. It appears “confident” of its response throughout the entire
sequence. Given this lack of degradation, we might reasonably infer that

FIGURE 9.2 Error curve for temporal parity when tested after 15 epochs

 Critical points in learning 173

the network’s generalization is probably absolute: It ought to perform
perfectly for strings of indefinite length. (If we really wanted to be sure,
however, we ought to test the network at least on strings of length 1,000
or even 100,000.).

Exercise 9.4

• The key to understanding what is happening lies in recognizing two
things:

The first fact is that the network’s memory (which is what it’s rely-
ing on to know whether the current state is “odd” or “even”) depends on
(1) the current activations of the hidden units, which must somehow
encode the current state; and (2) the recurrent connections (context-to-
hidden weights), which allow the network to retain information over
time (consider a worst case scenario where these connections are 0; then
nothing from the past would be remembered). But notice that the current
activations of the hidden units themselves are changed by the recurrent
weights, which serve as multipliers on the inputs to the hidden units. So
the recurrent weights are a critical factor in learning this task.

Second, remember that the hidden units’ activations are a nonlinear
function of their inputs. That means that within certain ranges of magni-
tude, inputs which vary by a great deal may produce hidden unit activa-
tions which differ by very little. Within other ranges, however, slight
differences in the magnitude of inputs may produce large differences in
activation.

Taken together, these two facts are the beginning to understanding
what happens when the network transitions from its limited generaliza-
tion to absolute generalization. The problem is simply that until weights
are learned which are of a magnitude (and the right sign) to ensure that
when hidden unit activations are fed back, their values are of a sufficient
magnitude to be retained over time.

We can illustrate this with an example drawn from Chapter 4 of the
companion to this handbook, Rethinking Innateness. We will use a sim-
pler network to make the issue clearer; you should be able to extrapolate
from this example to what is happening with the odd/even network.

Let us imagine that we have a network with one hidden unit, one
input, and one output, as shown in Figure 9.3.

174 CHAPTER 9

Let us imagine what would happen if the recurrent weight has a
value of and there is a constant bias of Then if we
start with the node having an initial activation of 1.0, on the next
cycle the activation will be given by Equation 9.1,

(EQ 9.1)

or 0.62. If this diminished value is then fed back a second time, the
next activation will be 0.53. After 10 iterations, the value is 0.50—
and it remains at that level forever. This is the mid-range of the
node’s activation. It would appear that the network has rapidly lost
the initial information that a 1.0 was presented.

This behavior, in which a dynamical system settles into a resting
state from which it cannot be moved (absent additional external input) is
called a fixed point. In this example, we find a fixed point in the middle
of the node’s activation range. What happens if we change parameters in
this one-node network? Does the fixed point go away? Do we have other
fixed points?

Let’s give the same network a recurrent weight and a
bias . Beginning again with an initial activation of 1.0, we find
that now the activation stays close to 1.0, no matter how long we iterate.
This makes sense, because we have much larger recurrent weight and so
the input to the node is multiplied by a large enough number to counter-

FIGURE 9.3 A one-node network which receives an initial input; the input is then
removed, and processing consists of allowing the network to fold its
activation back on itself through the recurrent weight. After some
number of iterations, we examine the output.

bias wr

final output

initial input

wr 1.0= b 0.5–=

a t 1+() 1
1 a t() 0.5–()–()exp+

1
1 exp 0.5–+
-------------------------- 0.62= = =

wr 10.0=
b 5.0–=

 Critical points in learning 175

act the damping of the sigmoidal activation function. This network has a
fixed point at 1.0. Interestingly, if we begin with an initial activation of
0.0, we see that also is a fixed point. So too is an initial value of 0.5. If
we start with initial node activations at any of these three values, the net-
work will retain those values forever.

What happens if we begin with activations at other values? As we
see in Figure 9.4, starting with an initial value of 0.6 results over the next

successive iterations in an increase in activation (it looks as if the node is
“climbing” to its maximum activation value of 1.0). If we had started
with a value of 0.4, we would have found successive decreases in activa-
tion until the node reached its fixed point close 0.0. Configured in this
way, our simple one-node network has three stable fixed points which
act as basins of attraction. No matter where the node begins in activation
space, it will eventually converge on one of these three activation values.

The critical parameter in this scheme is the recurrent weight (actu-
ally, the bias plays a role as well, although we shall not pursue that here).
Weights which are too small will fail to preserve a desired value.
Weights which are too large might cause the network to move too
quickly toward a fixed point. What are good weights?

Working with a network similar to the one shown in Figure 9.3, we
can systematically explore the effects of different recurrent weights. We

FIGURE 9.4 If a recurrent unit’s initial activation value is set to 0.6, after succes-
sive iterations the activation will saturate close to 1.0. An initial value
of 0.5 will remain constant; an initial value of less than 0.5 will tend
to 0.0 (assumes a bias of -5.0 and recurrent weight of 10.0).

fixed point

fixed point

fixed point

176 CHAPTER 9

will look to see what happens when a network begins with different ini-
tial activation states and is allowed to iterate for 21 cycles, and across a
range of different recurrent weights. (This time we’ll use negative
weights to produce oscillation; but the principle is the same.) Figure 9.5
shows the result of our experiment.

Along the base of the plot we have a range of possible recurrent
weights, from 0.0 to -10.0. Across the width of the plot we have differ-
ent initial activations, ranging from 0.0 to 1.0. And along the vertical
axis, we plot the final activation after 21 iterations.

This figure shows us that when we have small recurrent weights
(below about -5.0), no matter what the initial activation is (along the
width of the plot), we end up in the middle of the vertical axis with a
resting activation of 0.5. With very large values of weights, however,
when our initial activation is greater than 0.5 (the portion of the surface
closer to the front), after 21 iterations the final value is 0.0 (because the
weight is negative and we iterate an odd number of times, the result is to

FIGURE 9.5 The surface shows the final activation of the node from the network
shown in Figure 9.3 after 21 iterations. Final activations vary, depend-
ing on the initial activation (graphed along the width of the plot) and
the value of the recurrent weight (graphed along the length of the plot).
For weights smaller than approximately -5.0, the final activation is 0.5,
regardless of what the initial activation is. For weights greater than
-5.0, the final activation is close to 0.0 when the initial activation is
above the node’s mid-range (0.5); when the initial activation is below
0.5, the final activation is close to 1.0.

value of recurrent weight

 a
ct

iv
a t

i o
n

(a

ft e
r

21
 i t

er
at

io
ns

)

initial activation

-
-

-
-

-

 Critical points in learning 177

be switched off; with 22 iterations we’d be back on again). If the initial
activation is less than 0.5, after 21 iterations we’ve reached the 1.0 fixed
point state. The important thing to note in the plot, however, is that the
transition from the state of affairs where we have a weight which is too
small to preserve information to the state where we hold on (and in fact
amplify the initial starting activation) is relatively steep. Indeed, there is
a very precise weight value which delineates these two regimes. The
abruptness is the effect of taking the nonlinear activation function and
folding it back on itself many times through network recurrence. This
phenomenon (termed a bifurcation) occurs frequently in nonlinear
dynamical systems.

To return to the example in this chapter, at the point in training
where the network is able to generalize the odd/even solution forever, it
has undergone a bifurcation in its weight values. The underlying change
involves a process which operates continuously and without sharp tran-
sitions; but the effect on behavior is dramatic and appears abrupt.

