Saturated Reconstruction of a Volume of Neocortex

Narayan Kasthuri,1,8* Kenneth Jeffrey Hayworth,1,9 Daniel Raimund Berger,1,6 Richard Lee Schalek,1 José Angel Conchello,1 Seymore Knowles-Barley,1 Dongil Lee,1 Amelio Vázquez-Reina,2 Verena Kaynig,2 Thouis Raymond Jones,1,4 Mike Roberts,2,10 Josh Lyskowski Morgan,1 Juan Carlos Tapia,1,11 H. Sebastian Seung,6,12 William Gray Roncal,1,13 Joshua Tzvi Vogelstein,7,14 Randal Burns,3 Daniel Lewis Sussman,4 Carey Eldin Priebe,5 Hanspeter Pfister,2 and Jeff William Lichtman1,*

1Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
2School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
3Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218-2128, USA
4Department of Statistics, Harvard University, Cambridge, MA 02138, USA
5Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218-2682, USA
6Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
7Department of Statistical Science and Neurobiology, Duke University, Durham, NC 27708, USA
8Present address: Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
9Present address: Janelia Farm Research Campus, Ashburn, VA 20147, USA
10Present address: Department of Computer Science, Stanford University, Stanford, CA 94305, USA
11Present address: Department of Neuroscience, Columbia University, New York, NY 10032, USA
12Present address: Princeton Neuroscience Institute and Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
13Present address: Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
14Present address: Department of Biomedical Engineering and the Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218-2682, USA
*Correspondence: bobby.kasthuri@gmail.com (N.K.), jeff@mcb.harvard.edu (J.W.L.)
http://dx.doi.org/10.1016/j.cell.2015.06.054

SUMMARY

We describe automated technologies to probe the structure of neural tissue at nanometer resolution and use them to generate a saturated reconstruction of a sub-volume of mouse neocortex in which all cellular objects (axons, dendrites, and glia) and many sub-cellular components (synapses, synaptic vesicles, spines, spine apparatus, postsynaptic densities, and mitochondria) are rendered and itemized in a database. We explore these data to study physical properties of brain tissue. For example, by tracing the trajectories of all excitatory axons and noting their juxtapositions, both synaptic and non-synaptic, with every dendritic spine we refute the idea that physical proximity is sufficient to predict synaptic connectivity (the so-called Peters’ rule). This online minable database provides general access to the intrinsic complexity of the neocortex and enables further data-driven inquiries.

INTRODUCTION

The cellular organization of the mammalian brain is more complicated than that of any other known biological tissue. As a result, much of the nervous system’s fine cellular structure is unexplored. While it has been known for more than a century that a directional network interconnects many kinds of nerve cells (Cajal, 1899), and that this network underlies behaviors (Sherrington, 1906), for the most part, the precise relationships between the brain’s many cellular components are not known. Several laboratories are now beginning to generate such data in mammals using electron microscopy (EM). This work has provided new insights into the visual system (Anderson et al., 2011; Helmstaedter et al., 2011; Kim et al., 2014; Briggman et al., 2011; Bock et al., 2011; see also Takemura et al., 2013; Mishchenko et al., 2010). Descriptions of neuronal network structure could also be important if derangements in networks underlie psychiatric or developmental disorders and/or if modifications to these networks store learned information (i.e., memories). Exploring such possibilities may require methods for obtaining detailed synaptic-level connectomic data.

A reconstruction effort on the scale of mammalian brains, however, would be enormously expensive and difficult to justify without assurances that this kind of information would be of value (Marblestone et al., 2013; Plaza et al., 2014; Lichtman et al., 2014). Substantial savings in effort could come if the connectivity of the cerebral cortex could be ascertained without looking at every single synapse. For example, if the overlap of axons and dendrites at light microscope resolution provides sufficient information to infer connectivity (Hil et al., 2012), huge data sets of EM images of cerebral cortex might be superfluous. We thus decided to reconstruct all the connectivity within a very small piece of neocortical tissue (1,500 mm² at a resolution allowing identification of every synaptic vesicle) to be in a better position to decide whether or not obtaining complete brain maps at such a fine level of resolution reveals interesting properties that cannot be inferred from either lower resolution or more sparse analyses.

Previous connectomic studies of retina and hippocampus concluded that connectivity was not entirely predictable from the proximity of presynaptic elements to postsynaptic targets (Briggman et al., 2011; Mishchenko et al., 2010; Helmstaedter
et al., 2013). We wished to examine this question again but now in neocortex for several reasons. First, a large effort is underway to model and simulate neocortical processing based on stochastic connectivity based on spatial overlap of axons and dendrites (Markram et al., 2012). Second, the retina and the hippocampus (archicortex) are phylogenetically older than neocortex and may have evolved deterministic targeting mechanisms that could explain why overlap is insufficient to predict connectivity in those regions. In neocortex, however, less is known and it remains possible that spatial overlap is sufficient to explain synaptic connections between particular pairs of axons and dendrites. Third, in analyzing our data, we have found significant redundancies in the synaptic connections and wanted to know if these were accidental. For all these reasons, we have attempted to analyze the connectivity of each of many axons and dendrites by looking at not only the synapses each axon establishes but also the occurrences when axons and dendrites get close with potential post-synaptic targets but do not establish synapses.

Even for such a small volume, however, we found considerable technical challenges standing in the way of doing such an analysis. After “saturating” the segmentation of a sub-region in the middle of the imaged volume in which all intracellular space was assigned to one or another cellular entity, we then needed to catalog all the connectivity and structural information into a minable database before analyses. Surprisingly, analysis of the connectomic data turned out to be even more challenging than creating the image data or annotating it.

This “omics” approach provided a wealth of data for potential analysis. Here, we investigate aspects of the connectivity of excitatory axons and find interesting patterns that would have been difficult to detect with lower resolution methods. To assist readers who wish to examine the data in detail, we serve out the images and their segmentations and annotated databases that link to the image data, as well as all the software we developed for the display and analysis (described herein http://openconnectome/Kasthurietal2014/).

RESULTS

The results are divided into two parts. We first describe the technical approaches for acquiring and analyzing this data and then turn to some of the biological findings.

TECHNICAL DETAILS

Collecting Serial Brain Tissue Sections on Tape

We built an automatic tape-collecting ultramicrotome (ATUM) that retrieves brain sections from the water boat of a diamond knife immediately as they are cut via a continuous submerged conveyor belt (Figure 1A; Movie S1). The tape’s pulling motion and its adhesiveness cause the caught sections to lie flat on the moving tape (see Movie S1).

(B) ~10 m of Kapton tape with ~2,000 sections collected. Four of the 29-nm sections (red rectangle) are shown at a higher magnification at the bottom of the panel.

(C) The reel of tape is then cut into individual strips and mounted on silicon wafers for poststaining and/or carbon coating. A low-power scanning electron microscopy image of part of a wafer containing 85 brain sections is shown. One of the sections (red rectangle) is shown at a higher magnification in the next panel.

(D) One 29-nm section containing neocortex and hippocampus. The region that was studied at high resolution is the dark-looking box (red arrow). Scale bar, 1 mm.

See also Movie S1.
sections on the wafer for automated EM (Hayworth et al., 2014). Once mapped, the wafers constitute an ultrathin section library for repeated imaging of the sections at a range of resolutions (Figures 1D and 2; Movies S2, S3, S4, and S5).

Image Acquisition

Sections were imaged with a scanning electron microscope using backscattered electron detection (9–10 keV incident electron energy), which had sufficient resolution and contrast to detect individual synaptic vesicles (red arrows, Figure 2A). In this study, reduced osmium tetroxide-thiocarbohydrazide (TCH)-osmium (ROTO) was used as stain (Friedman and Ellisman, 1981; Tapia et al., 2012). The ROTO stain highlights a tubular organelle coursing through most unmyelinated axons, aiding in reconstruction of fine processes (blue arrows, Figure 2A) (Sinha et al., 2013; Movies S4 and S5). The plasma membranes with this staining protocol were 6–8 nm in width. We acquired high-resolution images with 3-nm pixels, ensuring that membrane boundaries would be oversampled for easier reconstruction. The same sample was imaged at lower resolutions (30 or 2,000 nm) to rapidly acquire images of larger tissue volumes (Figure 2B). Image acquisition scan rate was 1 M pixels per s. Time is also spent moving the stage from one section to another and automatic focusing each successive section, roughly halving the overall throughput.

Speed-up can be achieved in several ways, including imaging different wafers in parallel on multiple microscopes, use of secondary electron detection (with 1.5–3 keV incident electron energy and speeds of up to 40 M pixels per s; Figure S1A), and by imaging in a new microscope that parallelizes imaging by use of multiple scanning beams (Eberle et al., 2015; Figure S1B).

Generating a Multi-Scale Dataset from Cerebral Cortex

We created a multi-scale digital volume in order to provide tissue context surrounding the region in which we did circuit reconstruction. We first imaged all the sections in their entirety at low resolution (2 μm/pixel). We also imaged a sub-volume (a radial strip of cerebral cortex extending from the pia to white matter, 500 μm wide and 1 mm long) at 29 nm/pixel and finally we imaged an ~80,000 μm³ box (40 x 40 x 50 μm³) that transected the apical dendritic bundle of a cortical mini-column (Krieger et al., 2007) at high resolution (3 nm/pixel) (Figure 2B; Movies S4 and S5).

VAST

A manual tool to segment neuronal processes in the image data: we developed a computer-assisted manual space-filling segmentation and annotation program (“VAST,” http://openconnecto.me/Kasthurietal2014/Code/VAST/). VAST allowed us to work with EM images online, avoiding the need for their local storage, to “color” the images in at multiple scales of resolution, to organize the results in a flexible annotation framework, to export results for 3D visualization and analysis, and to do these tasks without being limited by working memory. We tested the accuracy of this manual tracing approach, by analyzing saturated segmentations in which every membrane-bound object in every section was colored in. We used

sharp knife we have successfully sectioned >10,000 sections from a small block without missing a cut and importantly manual segmentation is nearly flawless at this thickness (see below). Following section collection, the tape was cut into strips and placed on silicon wafers that were then photographed (Figure 1C). The wafer image was used to map the positions of the

Figure 2. Imaging Brain Sections on Tape

(A) A section of somatosensory neocortex imaged in a scanning electron microscope. The red arrow shows synaptic vesicles. The blue arrow shows a strongly labeled membranous tube found in unmyelinated axons.

(B) The strategy for placing high-resolution images in a larger anatomical context by re-imaging sections at multiple resolutions. The sections used for all of the subsequent analysis in this paper are ~2.5 mm³. See also Figure S1 and Movies S2, S3, S4, and S5.
a Matlab script (http://openconnecto.me/Kasthurietal2014/Code/findOrphans) to find “orphans” (i.e., segmented objects that were not connected to parent axons and dendrites; see the Supplemental Experimental Procedures for details). The analysis found that in a ∼500 μm³ cylinder surrounding an apical dendrite (see below), there were no axonal or dendritic orphans in the volume, which included a total of 568 spines and 601 terminal axon branches. With the VAST manual reconstructions, miswiring errors (e.g., connecting the spine head or terminal axon varicosity to the wrong parent process) were also apparently rare because there was substantial agreement between two experienced tracers working independently in the assignment of the finest processes to their parent dendrites or axons (spine necks >99%; 565/568 agreement and axonal terminal branches >99%; 598/601 agreement). In the six cases of disagreement, the two tracers reached consensus once they compared results, meaning there were no places in which the axonal and dendritic data were actually ambiguous. However, for the astrocytic cytoplasm (Figure 3J), there were many glial fragments for which experts could not agree on how they were connected.

RhoANA
Suite of automatic tracing tools: based on the tracing, we found 6.4 profiles per μm² in a section and estimated that in the 64,000 μm³ high-resolution volume there are 13.7 million cell profiles in its 1,850 sections. Experienced tracers require about 15 min to trace the ∼200 cell profiles in 1 μm³ so about two people-years of 24/7 tracing would be required to segment out all the profiles in this volume. We therefore developed ways to generate more rapid and automated segmentation of neural processes (details and software are available at http://www.rhoana.org/). To aid this effort, we manually traced all of the cellular objects in several small volumes (~150 μm³) and used this “stained glass”-segmented image data (Figure 3B) to train automated reconstruction methods (Fusion; Vazquez-Reina et al., 2011; Kaynig et al., 2013; GALA: Nuñez-Iglesias et al., 2014). Based on this training, we produced automated segmentations of all the cellular processes within a high-resolution volume with dimensions of 30.7 × 30.7 × 33.7 μm (via the RhoANA pipeline using random forest membrane probabilities and graph-cut segmentations with the Fusion segmentation algorithm). In a sub-volume of the cube centered on the “red” neuron’s apical dendrite (see below), we produced a different segmentation (via RhoANA using the Maxout deep-learning convolutional neural network for membrane probabilities and the GALA segment agglomeration algorithm). These automatically segmented volumes are available at http://openconnecto.me/Kasthurietal2014/data/automatic_segmentation (Figure 3C; Movie S7).

We found that although fully automated methods are improving rapidly, they are still only first passes and require human assistance to correct merge and split errors. In single images, we found that 92.6% of the pixels or 87.6% (of 92,747) of the profiles were correctly segmented with a fully automated segmentation algorithm (RhoANA with Maxout and GALA; Figures S2A and S2B). However, despite the appearance of largely correct two-dimensional data, when we analyzed cellular profiles in three dimensions, we estimated the need for ~0.9 split operations (to correct inappropriate mergers) and 5.8 merge operations (to correct splits) per μm³ (Figure S2C; Movie S8). We did these corrections for a sub-volume of the full segmented dataset (cylinder 3; see below), with a newly developed tool for computer-assisted editing and rendering (Mojo and an online version for this tool “Dojo”: Haehn et al., 2014; available at http://www.rhoana.org/). The most important metric for automated reconstruction is the accuracy of the resulting connectivity matrix, but we concluded that at present it is premature to generate fully automated connectivity matrices.

Biological Analysis of the Serial EM Images of Cerebral Cortex
In the medium resolution volume, we identified neuronal somata in order to locate the cortical layer boundaries (Figure 3A) and reconstructed the shapes of a subset of cells running in a cortical mini-column (Figure 3A; Movie S6). Most (~70%), 21/30 of these cells were pyramidal and the rest fell into several different categories, including putative interneurons, atypical excitatory cells, and glial cells. We then fully annotated a sub-volume of somatosensory cortex within this same volume (Movie S9; http://openconnecto.me/Kasthurietal2014/data/segments). Building on work done previously in the hippocampus (Mishchenko et al., 2010; Stepanyants and Chklovskii, 2005), we itemized all the neuronal and non-neuronal cells in three cylindrical volumes that encompass apical dendrite segments of two cortical pyramidal cells, including their spines (Movie S10). We selected these particular apical dendrites because they ran very close to each other (see pink arrow in Figures 3A and 3D) and originated from nearby neuronal somata (in upper layer 6; red and green arrows in Figures 3A and 3D). Thus, they appeared to be in the same mini-column and perhaps participated in the same neural processing unit (Mountcastle, 1997). The three cylinder site was in layer 5, 100 μm³ and 135 μm superficial to the pseudo-colored “red” and “green” neuronal somata, respectively. Cross-sections of the annotations of two cylinders are shown in Figures 3B and 3D; reconstruction of the three cylinders is shown in Figure 3E; and the location of all three cylinders in the full volume is shown with pink arrows in Figures 3A, 3D, and 3O. These three slightly overlapping ~600 μm³ cylinders, two of which (cylinders 1 and 3) are centered on the “red” neuron’s apical dendrite and one (cylinder 2) on the “green” apical dendrite, provided a total reconstructed volume of 1,500 μm³. In cylinder 3, rather than tracing the objects manually, we edited the computer-segmented data (Figure 3C). All of the 193 dendrites in this volume were traced out into the surrounding high-resolution cube, and some were traced onto the medium resolution data to locate somata (n = 30; Figure 3O).

Parts List: 3 Cylinder Volume
The 1,500 μm³ 3 cylinder volume contains parts of many cells (Movies S10 and S11) and of a variety of types (Figures 3E–3N; Movie S11), including 193 dendrites, 92% spiny, the rest relatively smooth (Figures 3K and 3N), and 1,407 unmyelinated axons. Based on synapse appearance, 93% of the axons are excitatory (Figure 3I), and most of the remainder are inhibitory (Figure 3L). A few axons (5; ~0.5%), despite possessing vesicle-filled varicosities, did not establish classic close synaptic

Figure 3. Multi-Scale Reconstruction in Neocortex

(A) Cortical neuronal somata reconstruction to aid in cortical layer boundaries (dotted lines) based on cell number and size. Large neurons are labeled red; intermediate ones are labeled yellow; and small ones are labeled blue. The site of the saturated segmentation is in layer V (pink arrow). These two layer VI pyramidal cell somata (red and green arrows) give rise to the apical dendrites that form the core of the saturated cylinders.

(B) A single section of the manually saturated reconstruction of the high-resolution data. The borders of the cylinders encompassing the “red” and “green” apical dendrites are outlined in this section as red and green quadrilaterals. This section runs through the center of the “green” apical dendrite (full data stack in Movie S9).

(C) A single section of a fully automated saturated reconstruction of the high-resolution data (full data stack in Movie S7). Higher magnification view (lower left inset) shows 2D merge and split errors (for 3D errors see: Figure S1).

(D) The two pyramidal cells (red and green arrows) whose apical dendrites lie in the centers of the saturated reconstructions. Dendritic spines reconstructed in the high-resolution image stack only.

(legend continued on next page)
junctions with postsynaptic cells. In total, there were 1,700 synapses at a density of one synapse per 1.13 µm³ (Table S1). We also observed astrocytic processes (Figure 3J), myelinated axons (Figure 3F), oligodendrocyte processes (Figure 3G), and about 20 entities that we could not as easily classify (Figure 3M). Neuronal processes (axons and dendrites) occupy 92% of the cellular volume with glial processes, occupying much of the remaining 8% (Movies S9 and S10). The non-cellular (extracellular) space accounts for 6% of the total volume, less than half the extracellular space estimates from living brains, probably because of fixation-induced swelling (Vanharrevel et al., 1965).

The ~7-fold disparity between the number of axons and dendrites (1,407 versus 193) likely reflects a real difference in the numbers of pre- and postsynaptic cells that send processes into the volume. We analyzed the shape of the 660 excitatory axons that entered cylinder 1 and found that only three of them (0.5%) established branches that were non-terminal within the volume (Figure S3). To estimate the number of axons that branched outside the cylinders and sent more than one branch in, we analyzed axonal arbors from light microscopy reconstructions of mouse neocortical pyramidal neurons (NeuroMorpho.org; see the Methods) by superimposing them on the cylindrical volumes at random locations. The result of this analysis argues that only ~8 of the 1,308 excitatory axons (< 1%) in the volume are likely to be branches originating from the same parent neuron. Also, the dendrites in the cylinder only rarely originated from the same neuron: we found two dendritic shafts in cylinder 1 that were from the same neuron (out of 100). Presumably, therefore, axons extend into a 7-fold greater volume than dendrites, on average. The ~1,600 different neurons within this small region of mammalian brain (several billionths of the volume of a whole brain) is more than five times as many neurons as are contained within the entire nervous system of a Caenorhabditis elegans (White et al., 1986).

Synapses in the Reconstructed Volume

We created a spreadsheet of the 1,700 synaptic connections in the volume, providing the location of each, its pre- and postsynaptic partners, and a wide variety of other information (Table S1; http://openconnecto.me/Kasthurietal2014/view/highResAnnotated; http://openconnecto.me/Kasthurietal2014/data/synapses).

The spreadsheet shows that the connectivity is highly skewed toward excitatory elements: 92% (177/193) of the dendrites are spiny and purportedly excitatory (Figure 3K; DeFelipe and Farinas, 1992), and 93% (1,308/1,407) of the axons are excitatory. Looking at each presynaptic varicosity, we found that 95% (1,610/1,700) of them also meet the criteria for being excitatory. Each excitatory axon establishes slightly more synapses in the volume than each inhibitory axon (~1.2 synapses/excitatory axon versus ~0.9 synapses/inhibitory). The excitatory-to-inhibitory-synapse ratio (van Vreeswijk and Sompolinsky, 1996; Wehr and Zador, 2003) is 20.2 for the dendrites of excitatory neurons (1,494 excitatory synapses versus 74 inhibitory synapses), whereas the ratio is only 9.7 (116 excitatory synapses and 12 inhibitory synapses) for the input to inhibitory dendrites. These ratios are in line with what has been described in hippocampal studies (Gulyas et al., 1999; Megías et al., 2001).

Most (71%; n = 1,207/1,700) of the synapses in the volume derive from varicosities along axons (en passant synapses), and the rest are at the end of short branches (terminal synapses). 18% of excitatory, and 43% of the inhibitory, axonal varicosities are presynaptic to multiple partners (Figure 4A). Multi-synaptic excitatory varicosities were previously described in the hippocampus (Chicurel and Harris, 1992; Popov and Stewart, 2009). The most extreme example in this dataset is a large excitatory en passant bouton innervating five different postsynaptic targets (Figure 4B). Tracing ten randomly chosen axons (with 78 varicosities) into the larger surrounding volume showed all but one axon had at least one multi-synaptic varicosity, suggesting that axons in general establish both mono- and multi-synaptic varicosities. Excitatory axons establish synapses mostly on spines (94%; n = 1,406/1,700), and inhibitory axons establish mostly on shafts (81%, n = 70/86). A few (1%; n = 7) of the unmyelinated axons, despite having vesicle-filled varicosities, do not make traditional close synaptic contacts with any target cell within the volume (listed as “2” in column 12 in Table S1). Some of these axons have relatively large vesicles that match the description of cortical aminergic axons (see, for example, Smiley and Goldman-Rakic, 1993). We also notice that glial processes associate with synapses in an uneven way (Figure 3J; Movies S9 and S10): ~50% of synapses were not adjacent to any glial process.

We did not find evidence of electrical connections in the three cylinder volume. Gap junction proteins are seen in inhibitory neurons in layers 4 and 6, but not so much in layer 5, where this study was carried out (Deans et al., 2007).

Synaptic Vesicles

In cylinder 1, we identified the location of each synaptic vesicle at 774 synapses (Figures 4A, 4B, 5A, and 5B; Table S1; http://openconnecto.me/Kasthurietal2014/view/highResAnnotated; http://openconnecto.me/Kasthurietal2014/data/vesicles). The counts were similar (~4.6%) when two expert tracers independently counted the same synapses, and they likely reflect the actual number per synapse (Figure S4). The number of vesicles per synaptic varicosity range from 2 to 1,366 for varicosities with one postsynaptic target (mean = 153 ± 127), with significantly greater numbers of vesicles at multi-synaptic varicosities (mean = 200 ± 173; Wilcoxon rank-sum test; p = 0.0005). The

(E) The saturated reconstruction volume.

(F–N) The “parts list” of the saturated volume.

(O) Reconstruction of 30 dendrites contained within cylinder 1 (pink arrow) that were traced back to their cell bodies. These dendrites were predominantly apical dendrites of pyramidal cells (gold), several basal dendrites of pyramidal cells (blue), and in one case both a branch of the apical and a basal dendrite branch of the same pyramidal cell entered the volume (green) and a small number of non-pyramidal cell dendrites (red). The somata of the red and green apical dendrites that lie at the centers of saturated reconstruction are shown at red and green arrows. Scale bars, 1 µm for (B) and (C) and 7 µm for (E).

See also Figures S2 and S3 and Movies S6, S7, S8, S9, S10, and S11.
number of vesicles is not significantly different in excitatory and inhibitory synapses.

Mitochondria Size and Density in Different Cells

We also identified 607 mitochondria in cylinder 1 with a density of \(\sim 1/\mu m^2 \) (Figure 5C; mitochondrial dataset available http://openconnecto.me/Kasthuri2014/view/highResAnnotated and http://openconnecto.me/Kasthuri2014/data/mitochondria). Mitochondria occupy twice as much volume in inhibitory dendrites than in excitatory dendrites, perhaps related to the metabolic demands associated with greater levels of activity (Beierlein et al., 2003). In addition, mitochondria are present in axonal varicosities, most typically varicosities that had large numbers of vesicles (Table S1). Only very rarely \(n = 3/1,425 \) do mitochondria reside in dendritic spines, a surprising result given the fact that mitochondria are transported to spines with intense stimulation (Li et al., 2004). Among the three mitochondria that enter spines, two were continuations of mitochondria in the parent dendrite (http://openconnecto.me/Kasthuri2014/view/spineMito1; http://openconnecto.me/Kasthuri2014/view/spineMito2; http://openconnecto.me/Kasthuri2014/view/spineMito3).

Spine Numbers and Sizes

We itemized 1,425 dendritic spines in the 3 cylinder volume. They occupy \(\sim 9% \) percent of the intracellular space. Although each of the three cylinders was constructed around a single apical dendrite to capture nearly all of its spines, there were many more spines from other dendrites that invaded this territory, i.e., the central “red” dendrite contributes only 12%; \(n = 77/628 \) of the spines in cylinder 1. Furthermore, the central dendrite’s spines were completely intermingled with the spines of other dendrites (see Figure 7A; Movie S12).

In general, spines appear more densely packed (\(\sim 51 \) spines per 10 \(\mu m \) dendritic length for the red dendrite in cylinder 1) and often of greater length (mean \(\sim 1.8 \pm 0.6 \mu m \) and longest \(\sim 3.8 \mu m; n = 77 \)) than expected in mouse cortex based on previous reports (Benavides-Piccione et al., 2002). Perhaps this is a consequence of the saturated method of reconstruction, where no spine could be overlooked. The long neck lengths could mean that some of these spines are electrically invisible to the soma (Araya et al., 2006). Larger spine volumes were positively correlated with spine apparati \(r = 0.36; p < 0.000001 \), larger postsynaptic densities \(r = 0.77; p < 0.000001 \), larger numbers of presynaptic vesicles \(r = 0.58; p < 0.000001 \), and presynaptic mitochondria \(r = 0.141; p = 0.007 \).

Approximately 5% (39/780) of spines belonging to the central dendrite were not innervated by an axon. They appeared longer and thinner than spines that were innervated and often did not terminate in “heads” (Figure S5). These are termed filopodia (Purpura, 1975). Individual filopodia occupied less volume \((0.03 \pm 0.02 \mu m^3) \) than innervated spines \((0.10 \pm 0.08 \mu m^3) \) and only \(\sim 30% \) of them have spine apparati versus 60% of innervated spines.

Connectivity Patterns of Excitatory Axons

We examined excitatory axonal input to dendritic spines that account for three-quarters of the synapses \((n = 1,286/1,700) \) in the 3 cylinder volume and quickly found by mining the data in the synapse spread sheet (Table S1) a potential anatomical correlate of the physiological finding that different excitatory axons can have strikingly different strength connections with the same dendrite (Markram et al., 1998; Song et al., 2005). There were many instances in which the same axon innervated the same dendrite at multiple different spines. Such multiple contacts have been described in the hippocampus (Chicurel and Harris, 1992) and inferred from light microscopy of cortex (Markram et al., 1997). In cylinder 1, the 77 excitatory spine synapses onto its central (red) apical dendrite came from only 63 different axons because eight axons innervated two spines each and three axons innervated three spines (Movie S13). In cylinder 2, 12 of a total of 84 axons innervated two spines of the green dendrite, accounting for 22% of that dendrite’s spines. Such multiple contacts were not restricted to apical dendrites because the most extreme example was an axon that innervated...
five different spines of a basal pyramidal dendrite (Figure 6). The spines innervated by the same axon were not by rule adjacent either in terms of the location of the spine heads or their origins from the dendritic shaft (Figure 6). In cylinder 1 there were 34 instances in which an axon established synapses on two spines of the same dendrite, 4 instances in which an axon innervated three spines on the same dendrite, and the 1 instance of five just mentioned. Therefore, 46 synapses were “redundant” in the sense that these synapses replicated synaptic connections that were already established by a different synapse of the same axon on the same target cell. For all spines in cylinders 1–3, we counted 97 redundant synapses. However, given the shape of the volume, only the red and green dendrites had all their spines assayed, and thus the measured redundancy almost certainly underestimates the actual amount.

Next, we consider potential reasons for why multiple spine synapses between an axon and a dendrite exist. One idea is that, by virtue of having substantially more branches or a more convoluted path through the volume, some axons have a greater opportunity to establish multiple synapses with the same dendrite than simpler axons. However, there was only a weak correlation between the total length of excitatory axons that crossed through cylinder 1 and the number of synapses they established with its central dendrite (n = 63 axons, 77 synapses; correlation = 0.16; Figure S6A). Alternatively, some axons may have a strong affinity to run near the spines of particular dendrites. We therefore looked at the trajectory of each excitatory axon in greater detail to see if we could discover any differences between the axons that innervated the central (“red”) dendrite in cylinder 1 and a cohort of excitatory axons that did not innervate the central dendrite in the cylinder but at least passed immediately adjacent to at least one of its spines (contacts we call “touches,” see the Methods for details). Many axons touched each spine (8.9 ± 4.3 excitatory axons touched each spine), but in almost all cases (~99%) only one excitatory axon innervated each (Figure 7B; Movie S14; http://openconnecto.me/Kasthurietal2014/data/touchSynapse). The analysis of axons making touches and those that innervated the central dendrite argues against the idea that the trajectory axons predict their synaptic connectivity. First, for the 77 dendritic spines of the central dendrite in cylinder 1, we found little correlation (correlation coefficient = 0.0001) between the number of these spines that an excitatory axon touches versus the number of synapses it establishes on these spines, as would be expected if synapse probability is just related to the number of opportunities based on proximity to spines (Figure S6B). Second, we found no evidence to support the idea that axons that established the synapses with the central dendrite grew in closer proximity to that dendrite than the axons that touched but did not establish synapses. We compared the length of axons that entered the cylinder and touched a spine of the central dendrite without establishing any synapses with it to the lengths of axons that established synapses with the central dendrite. The axons that touched, but did not establish synapses with the central dendrite, were on average slightly longer in the volume than the axons that established synapses with it to the lengths of axons that established synapses with the central dendrite.
Figure 6. Multiple Synapses of the Same Axon Innervate Multiple Spines of the Same Postsynaptic Cell

An extreme example in which one axon (blue) innervates five dendritic spines (orange, labeled 1–5) of a basal dendrite (green) is shown. Arrows point to other varicosities of this axon that are innervating dendritic spines of other neurons (data not shown). Scale bar, 2 μm.

synapses (mean 9.9 ± 6.6 μm synapsing versus mean 10.8 ± 5.18 μm touching), providing no support for the idea that innervating axons had a greater affinity to grow along the central dendrite than axons that passed by but did not innervate it (Stepanyants et al., 2004).

We tested whether the axon-spine connectivity observed could be based on purely stochastic mechanisms. Specifically, did redundant excitatory synapses originate by synapse formation among a random subset of the close encounters (i.e., touches) between excitatory axons and dendritic spines? This analysis tests a high-resolution version of the so-called Peters’ rule (see discussion). We analyzed the 7,505 spine touches and 1,037 synapses between all the excitatory axons (n = 916) and 63 different excitatory axons that touched the same number of its spines, but did not innervate the central dendrite’s spines in the cylinder (cohort 2). Inside the cylinder, the 63 axons in cohort 1 as already described, innervated multiple spines on the central dendrite whereas axons in cohort 2 did not innervate any spines of the central dendrite (by definition) despite both groups having the same access to that dendrite’s spines. We then traced these two sets of axons into the surrounding high-resolution volume to see if their synaptic preferences within the cylinder predicted their connectivity preferences outside the cylinder. The results were clear: axons in cohort 1 continued to innervate the central dendrite in the large surrounding volume, adding an additional 11 synapses onto its spines. Axons in cohort 2, however, added only 1 synapse on the central dendrite (Figures 7E and 7F; p < 0.003; from the binomial distribution, see the Methods). These data show that axons have intrinsic preferences for the spines of some dendrites as opposed to others. However, even among those axons that innervate the central dendrite in the cylinder, some appear better matched to it than others based on their behavior outside the cylinder. Among the axons innervating the central dendrite in the cylinder their likelihood to form additional synapses with it outside the cylindrical volume was in rough proportion to the number of synapses they formed with it in the cylinder. The cohort of axons that established one synapse with the central dendrite in cylinder 1 (n = 52) add 0.13 synapses per axon with it in the larger volume (i.e., excluding the cylinder); those that established two synapses on the central dendrite in the cylinder (n = 8) added 0.38 additional synapses per axon and those axons that established three synapses with the central dendrite in the cylinder (n = 3) added 0.67 additional synapses per axon. Importantly however, these three groups of axons did not differ in their tendency to establish synapses on the sum of all their other dendritic targets indicating that the different synapse biases related to the central dendrite was not accounted for by intrinsically different tendencies to establish synapses among these three cohorts. When all the 63 axons that innervated the central dendrite were considered as a single population ~30% (18/63) of them innervate the central dendrite multiple times. Thus in this region of cortex at least, axons forming multiple synapses...
on the same dendrite are commonplace and the tendency appears to be graded: some axons consistently avoid synapses with some dendrites, and among those that do form synapses with a dendrite, there appear to be a range of tendencies from weak to strong.

Synapses with Identical Activity

The high incidence of multiple synapses of one axon on one dendrite offers an opportunity to study spine synapses with nearly identical pre- and postsynaptic activity patterns. Are structural properties of synapses regulated by activity patterns? Such tests have been carried out in the hippocampus suggesting that they do (Sorra et al., 1998) and here we examine if the trends are the same in neocortex. We use the synapse dataset (Table S1) to compare five structural features of pairs of synapses established by the same axon on pairs of dendritic spines of the same dendrite. To assess whether synapses of the same axon on the same dendrite show more similarity than would be expected if synapse structures at each site are independently and randomly determined, we compared the measured values between the actual pairs with randomly chosen pairs from the same cohort by doing a permutation test.

The overall conclusion we reach is that pairs of excitatory synapses that have identical pre- and postsynaptic partners tend to be more similar than randomly chosen pairs from the same cohort for 4 of the 5 metrics (mitochondria in the synaptic terminal being the exception) but that for our data sample, this only reaches statistical significance for measures of the volume of dendritic spines. The evidence for similarity is stronger at pairs

Figure 7. Specificity of Spine Innervation by Excitatory Axons

(A) A rendering demonstrating the high density and intermixing of spines from the red dendrite (red) and many other dendrites (gray) in the cylinder surrounding the “red” apical dendrite. See also Movie S13.

(B) A reconstruction showing 12 additional excitatory axons in the immediate vicinity of a dendritic spine (arrow) and its innervating axon (arrow). See also Movie S14.

(C) A reconstruction showing the nine spines (blue) that “touch” one excitatory axon (green) and the three spines (orange) that are innervated by it.

(D) A histogram showing the number of redundant synapses (see text) in 80,000 randomizations of the synapses among the touches of each axon. In none of these trials was the number of redundant synapses equal to, or greater than, the actual number (red line).

(E) Sites in which the axons that form synapses with the “red” dendrite’s spines inside the cylinder establish 11 additional synapses with this dendrite outside the cylinder (yellow spheres). Axons that only touched the “red” dendrite spines in the cylinder form only one synapse with it outside of the cylinder (blue sphere).

(F) A graph showing the result described in (E) (p = 0.003). Scale bars, 2 µm for (A) and 15 µm for (E).

See also Figures S5 and S6 and Movies S12, S13, and S14.
sharing both the same axon and the same dendrite than pairs sharing either just the same axon (on different dendrites) or just the same dendrite (but from different axons).

DISCUSSION

The aim of this work was to turn EM images of brain into a minable dataset for multiple analyses without the need for new image data for each question (Figure S7). The vast majority of our effort occurred after generating the segmented images as we learned how to transform images into a database and analyze it. The synapse database (Table S1) provides such a resource for the connections within the volume as demonstrated by some of the queries and results in this paper.

In the last few years there have been a number of detailed analyses of neural ultrastructure and its relation to functional properties of neurons. In this paper we depart from this approach in that there were no antecedent functional studies to focus our analysis. The goal rather was to see what could be learned from a saturated connectomic analysis per se in neocortex. Part of the motivation was to explicitly consider the fact that connectomics can reveal structure where functional information is not available in analogy to the way genomics reveals sequences of genes whose function are not yet known. To allow for further inquiries and analyses in the high-resolution volume (80,000 ×μm³) we provide access to all the image data via the Open Connectome Project (http://openconnecto.me/Kasthurietal2014), the 2D and 3D visualization, tracing, and editing tools, many of which were developed specifically for this project. Moreover, much of the analytic software developed for this project is also available (http://openconnecto.me/Kasthurietal2014/Code).

We analyzed the synapses of excitatory axons with dendritic spines, the most plentiful synapses in the saturated volume to learn if their connectivity could be predicted by simply knowing the degree of physical overlap of axons and dendrites. This idea underpins theoretical approaches to understanding the brain (Braitenberg and Schuz, 1998; da Costa and Martin, 2013). Explaining synaptic connectivity by physical overlap is an attractive idea because of the obviously laminated organization of many regions of the brain including the cerebral cortex. Evidence supports the idea that molecular cues guide innervating terminal axon branches and perhaps postsynaptic dendrites to particular regions where they can form synapses with each other (Williams et al., 2010). It is thus possible that synaptic specificity in the cortex is explained in large part by axon and dendrite guidance mechanisms that put pre- and postsynaptic elements in close proximity (i.e., the same layer or sub-layer). If so, this would simplify the analysis of cortical connectivity and support models based largely on areal projections of axons and the classes of dendrites in their terminal fields. Such statistical approaches potentially provide a way to model brains without requiring knowing the exact details of every neuron’s connections (Binzegger et al., 2004; Hill et al., 2012). This concept, called Peters’ Rule, after Alan Peters (despite his insistence that he disputes it—A. Peters, personal communication) has been examined in retina and hippocampus. In retina some data support the idea that, to at least some degree, the contacts (probably synapses) between neurons can be accounted for by their proximity, in support of Peters’ Rule (Kim et al., 2014). However even that work found the numbers of contacts were skewed from what one would expect if proximity were the only factor guiding contacts. In a different piece of work from the same serial dataset the directional selectivity of individual amacrine dendrites looked to be arranged in a way that was incompatible with random contacts (Briggman et al., 2011). In hippocampus, support for the idea that connectivity was not explicable simply by proximity has also been obtained (Mishchenko et al., 2010; Druckmann et al., 2014). The previous results do not explicitly test the degree to which actual proximity of each individual axon to all the postsynaptic sites in a volume explains the connectivity patterns observed.

We therefore used the saturated reconstruction to identify each place each excitatory axon comes within touching distance to a dendritic spine. We discovered that each spine is closely apposed by about nine different axons (of which typically only one establishes a synapse). This means that one must use some caution in light microscopy when claiming an axon and a nearby dendritic spine are making synaptic contact. Our results argue for the idea that cellular identity, and not proximity, guides the connections between excitatory axons and dendritic spines. The best predictor of whether an axon would establish a synapse with a particular dendrite was its synaptic connectivity with that dendrite at other sites. An excitatory axon that established a spine synapse with a dendrite, had a 40% probability of establishing another synapse on the same dendrite whereas excitatory axons that only came adjacent to, but did not innervate, a dendrite’s spine had a 25-fold lower probability (~1.6%) of establishing a synapse with that dendrite at another site. Thus while physical overlap of axons and dendrites is necessary, it is not sufficient to generate the pattern of synaptic connections in this region of cerebral cortex, refuting Peters’ rule.

The abundance of multiple spine synapses of the same excitatory axon on the same dendrite suggests that the strength of excitatory connections here, as elsewhere in the brain, is based on the number of synapses between them and can range from zero to a potentially large number. Changes in the number of spine synapses between an axon and a dendrite could be downstream of short term alterations in synaptic efficacy (such as by changes in neurotransmitter receptor number or spine shape at individual synapses). In distinction to synaptic efficacy, such numerical changes in connectivity may be longer lasting and may be less reversible. Indeed, developmental synapse elimination in the peripheral nervous system occurs in this way: changes in efficacy are followed by addition of new synaptic sites (Colman et al., 1997). If comparable developmental processes of synapse elimination and compensatory synapse addition that are known to occur in the peripheral nervous system, and some parts of the CNS (Hashimoto and Kano, 2005; Walsh and Lichtman, 2003), are also occurring in the cerebral cortex, then the pattern of connectivity seen here might occur as a consequence of similar activity-dependent mechanisms. In particular, if synapse elimination removes some of the axonal input converging on a pyramidal cell, then remaining inputs might locally sprout to occupy vacated spines in much the same way remaining motor axons takeover sites vacated by eliminated axons at
the developing neuromuscular junction (Walsh and Lichtman, 2003; Turney and Lichtman, 2012). Saturated reconstructions of neural circuits in younger cerebral cortex may therefore be informative.

Finally, given the many challenges we encountered and those that remain in doing saturated connectomics, we think it is fair to question whether the results justify the effort expended. What after all have we gained from all this high density reconstruction of such a small volume? In our view, aside from the realization that connectivity is not going to be easy to explain by looking at overlap of axons and dendrites (a central premise of the Human Brain Project (Markram et al., 2012), we think that this “omics” effort lays bare the magnitude of the problem confronting neuroscientists who seek to understand the brain. Although technologies, such as the ones described in this paper, seek to provide a more complete description of the complexity of a system, they do not necessarily make understanding the system any easier. Rather, this work challenges the notion that the only thing that stands in the way of fundamental mechanistic insights is lack of data. The numbers of different neurons interacting within each miniscule portion of the cortex is greater than the total number of different neurons in many behaving animals. Some may therefore read this work as a cautionary tale that the task is impossible. Our view is more sanguine; in the nascent field of connectomics there is no reason to stop doing it until the results are boring.

EXPERIMENTAL PROCEDURES

A detailed description is available in the Supplemental Experimental Procedures.

Data Acquisition

An anesthetized adult mouse was perfused transcardially with a fixative solution containing glutaraldehyde, paraformaldehyde, and CaCl$_2$ in cacodylate buffer. The brain was removed and maintained overnight at 4°C in the same fixative solution. A 200-μm vibratome section encompassing part of the somatosensory cortex was then removed, washed, and stained with reduced osmium tetroxide-thiocarbohydrazide (TCH)-osmium (“ROTO”) and infiltrated with Epon (for details, see Tapia et al., 2012). The cured block was trimmed to a 2 × 3 mm rectangle and a depth of 200 μm and then readied for automated serial sectioning. The automated, unattended collection of 29.4-nm serial sections was accomplished using a custom tape collection device attached to a commercial ultramicrotome (ATUM). The sections were collected on plasma-treated polyamide (Kapton, Sheldahl) 8-mm-wide tape. The tape was then cut into strips and attached to silicon wafers (Figure 1). The wafers with sections were then coated with ~10 nm of carbon to ensure conductivity. An automated protocol to locate and image sections on the wafers was used (Hayworth et al., 2014; see also Tomassy et al., 2014) with a Sigma scanning electron microscope (Carl Zeiss), equipped with the ATLAS software (Fibics). The serial section images were acquired using backscattered electron detection. Single images using secondary electron detection were acquired using the FEI Magellan thru-the-lens detector or the Zeiss MultiSEM 505. Sections collected on carbon-coated Kapton were required for secondary electron detection. For the medium- and high-resolution data sets, alignment was accomplished by affine image transformations using custom Matlab scripts. The high-resolution image stack (1,850 images) was aligned using a single affine transformation per image. The aligned images were then manually segmented using a custom Direct3D-based Windows volume annotation and segmentation tool (VAST; http://openconnectome.me/Kasthurietal2014/Code/VAST). The segmented images and metadata were processed for data analysis with Matlab scripts and 3D rendering with Matlab scripts for computation of surface meshes and 3dsMax (Autodesk) for the rendering steps. We also developed RhoANA, a processing pipeline, to generate automatic segmentations, and Mojo, a proofreading tool. All code is open source and available online at http://www.rhoana.org/. In order to scale to large data sets, we designed the processing pipeline to run on a computer cluster.

Data Analysis

Excitatory (E) and inhibitory (I) synapses were classified according to established criteria (Peters et al., 1991). If a particular synapse was ambiguous, additional synapses of the same axon were found and analyzed until a clear assignment could be made. In any section synaptic vesicles were only counted that showed a clear center, and this is an accurate measure of the total number of vesicles (Figure S4). We utilized the Open Connectome Project, which has developed the Reusable Annotation Markup for Open CoNnectomics (RAMON), a spatial database to store large-scale images and co-registered annotation datasets (Burns et al., 2013). To assess whether the observed number of “redundant” synapses (defined as the number of synapses in excess of one that an axon and dendrite “share”), we used Monte Carlo reassignment of the synapses (the Sudoku algorithm) among all the close contacts each axon established with dendritic spines described in detail in the Supplemental Experimental Procedures. To estimate the number of objects within the cylinder that are likely to be branches of the same axon, we used a set of cortical axon skeletons available at the NeuroMorpho web site (Ascoli et al., 2007) and a Monte Carlo simulation in which the cylinder is randomly translated so that at least one branch overlaps, and we count the number of times a second branch is also in the cylinder. To assess the similarity of pairs of synapses made by the same axon on the same dendrite, we select all the pairs of synapses shared by the same axon and same dendrite (SASD) from the spreadsheet in Table S1 and use the values of five morphological metrics for statistical analysis.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, 7 figures, 1 table, and 14 movies and can be found with this article online at http://dx.doi.org/10.1016/j.cell.2015.06.054.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

We gratefully acknowledged support from the NIH/NINDS (1DP2OD006514-01, TR01 1R01NS076467-01, and 1U01NS090449-01), Conte (1P50MH094271-01), MURI Army Research Office (contract no. W911NF1210594 and IIS-1447786), CRCNS 1R01EB016411), NSF (OIA-1125087 and IIS-1110955), DARPA (HR0011-14-2-0004), the Human Frontier Science Program (RGP0051/2014), the JHU Applied Physics Laboratory, the Research Program for Applied Neuroscience, the Howard Hughes Medical Institute, Nvidia, Intel, and Google. We are also grateful to the Center for the Developing Child at Harvard University for providing tracers, Masconomet Regional High School, and Priya Manavalan and Kunal Lillaney at the Open Connectome Project for help with data management.

Received: October 19, 2014
Revised: March 10, 2015
Accepted: June 1, 2015
Published: July 30, 2015

©2015 Elsevier Inc.
REFERENCES

Cajal, R.S. (1899). Textura del sistema nervioso del hombre y de los vertebrados (Madrid: Moya).

Saturated Reconstruction of a Volume of Neocortex

Graphical Abstract

Highlights

- Tape-based pipeline for electron microscopic reconstruction of brain tissue

- Annotated database of 1,700 synapses from a saturated reconstruction of cortex

- Excitatory axon proximity to dendritic spines not sufficient to predict synapses

Authors

Narayanan Kasthuri, Kenneth Jeffrey Hayworth, Daniel Raimund Berger, ..., Carey Eldin Priebe, Hanspeter Pfister, Jeff William Lichtman

Correspondence

bobby.kasthuri@gmail.com (N.K.), jeff@mcb.harvard.edu (J.W.L.)

In Brief

Automated technologies probing the structure of neural tissue at nanometer resolution generate a saturated reconstruction of a sub-volume of mouse neocortex, refuting the idea that physical proximity is sufficient to predict excitatory synaptic connectivity.