
Abstract
We describe a comprehensive linear ap-

proach to the problem of imaging brain activity
with high temporal as well as spatial resolution
based on combining EEG and MEG data with
anatomical constraints derived from MRI im-
ages.  The Òinverse problemÓ of estimating the
distribution of dipole strengths over the corti-
cal surface is highly underdetermined, even
given closely spaced EEG and MEG record-
ings.  We have obtained much better solutions
to this problem by explicitly incorporating both
local cortical orientation as well as spatial co-
variance of sources and sensors into our for-
mulation.

An explicit polygonal model of the corti-
cal manifold is first constructed as follows:  (1)
slice data in three orthogonal planes of section
(needle-shaped voxels) are combined with a
linear deblurring technique to make a single
high-resolution 3-D image (cubic voxels), (2)
the image is recursively flood-filled to deter-
mine the topology of the gray-white matter bor-
der, and (3) the resulting continuous surface is
refined by relaxing it against the original 3-D
gray-scale image using a deformable template
method, which is also used to computationally
flatten the cortex for easier viewing.  The ex-
plicit solution to an error minimization formu-
lation of an optimal inverse linear operator
(for a particular cortical manifold, sensor

placement, noise and prior source covariance)
gives rise to a compact expression that is prac-
tically computable for hundreds of sensors and
thousands of sources.  The inverse solution can
then be weighted for a particular (averaged)
event using the sensor covariance for that
event.  Model studies suggest that we may be
able to localize multiple cortical sources with
spatial resolution as good as PET with this
technique, while retaining a much more fine
grained picture of activity over time.

INTRODUCTION
Over the past few decades a variety of

techniques for non-invasively measuring brain
activity have been developed.  Each of these
techniques has important and unique advantag-
es, but also significant limitations.  For exam-
ple, the positron-emission tomography (PET)
technique using labeled water to detect blood
flow has good (~cm), uniform spatial resolu-
tion, but relatively poor (~10s of sec) temporal
resolution.  Several recently developed mag-
netic resonance imaging (MRI)  techniquesÑ
measuring blood volume changes with a con-
trast agent (Belliveau et al., 1991) and measur-
ing hemoglobin oxygenation via its effects on
nearby water (Ogawa et al., 1992)Ñ promise
somewhat better spatial and temporal resolu-
tion.  As with PET, however, the indirect con-
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nection between the neural activity and its mea-
sured metabolic consequences conceals the
fine (subsecond) structure of the underlying
neural events.

A widely used technique with better
(~msec) temporal resolution is electroencepha-
lography (EEG), which measures the potential
difference between various locations on the
scalp.   A number of interesting correlations be-
tween features of the measured waveforms and
various aspects of attention, memory, and lin-
guistic tasks have been discovered (see e.g.,
Luck et al., 1990; van Petten & Kutas, 1991;
Neville et al., 1991).  The temporal resolution
of this technique is essentially limited only by
the time scale of the biological processes pro-
ducing the potentials.  The spatial resolution,
however, is limited by several factors.  One
problem is that activity in a small region of the
brainÑ especially if it is located deep inside the
headÑ can produce potentials that are spread
rather widely across the scalp, strongly over-
lapping potentials produced by other sources.

Closely related to EEG is magnetoen-
cephalography (MEG), which measures minute
fluctuations in the magnetic field outside the
head using extremely sensitive (SQUID) sen-
sors (see e.g., Wood et al., 1985; Hari & Lou-
nasmaa, 1989; Pantev et al., 1990; Wood et al.,
1990).  The EEG and MEG are fundamentally
related through MaxwellÕs equations to the dis-
tribution of dipole moment throughout the
brain and head and hence have similar temporal
resolution.  However, the MEG has the advan-
tage of being less affected by head inhomoge-
neities, and somewhat less smeared out spatial-
ly by skull impedance than the EEG.   On the
other hand, a weakness of the MEG is its rela-
tive insensitivity to deep or radially oriented
sources, making it effectively blind to certain
patterns of activity in the brain that would pro-
duce an observable EEG.

The so-called forward problem of calcu-
lating the electric and magnetic fields outside
the head, given the current distribution inside
head and the conductive properties of the head
and brain, is a well-defined problem of electro-
statics (Nunez, 1981).  By contrast, the so--

called inverse problem of finding the distribu-
tion of currents inside the head, based on elec-
tric and magnetic recordings outside the head,
is fundamentally ill-posedÑ that is, it has no
unique solution.  For any set of measurements
outside the head, there are infinitely many cur-
rent distributions inside the head that are com-
patible with those recordings.  Although com-
bining both electric and magnetic data about
the same event reduces the space of indistin-
guishable solutions, additional constraints are
needed in order to make the problem solution
unique in a principled way.  Additional con-
straints come from assumptions about likely
current source distributions and statistics, sen-
sor statistics, and information from other activ-
ity imaging techniques like PET or functional
MRI.

In the following we will present a single
framework for combining data from: (1) EEG
and MEG recordings (and PET or functional
MRI, if available), (2) cortical surface recon-
structions based on MRI images, (3) prior as-
sumptions about typical spatial distributions of
brain activity, and (4) information about cova-
riance of the sensors for a particular (averaged)
event.  Our primary goals are to retain a linear
approach, but constrain it so that the ill-posed-
ness of the inverse problem is greatly reduced.
A particularly insidious type of ill-posedness is
when sources cancel each other, leading to
equivalent solutions that are qualitatively very
different.  Our studies suggest that the ill-pos-
edness that remains is usually benign; nearby
sources may not be resolved, but the qualitative
structure of the solution is preserved.  By solv-
ing directly onto the cortical manifold, it is
much easier to assess and view solutions, espe-
cially after the cortex has been partially Òinflat-
edÓ (PET or functional MRI data by themselves
could also advantageously be viewed this way).

Several components of the current ap-
proach to the inverse problem have been con-
sidered individually by other authors (Nunez,
1981; Scherg, 1989; Ioannides, Bolton, & Clar-
ke, 1990; Smith et al., 1990; Wood et al., 1990;
Mosher, Lewis, & Leahy, 1992; George et al.,
in press; Greenblatt, personal communication).
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By integrating multiple constraints into a uni-
tary framework, however, we have been able to
obtain much better behaved solutions than
those obtained with any technique used by it-
self.  Model studies suggest that we may be
able to localize multiple cortical sources with
spatial resolution comparable to PET or func-
tional MRI while retaining a fine-grained pic-
ture of activity over time.

A LINEAR APPROACH TO THE IN-
VERSE PROBLEM

In the typical frequency range of neural
electric activity of less than a few hundred Hz,
the electric and magnetic fields of the brain can
be well accounted for by the quasi-static case of
MaxwellÕs equationsÑ that is, magnetic induc-
tion and capacitive effects are negligible (Nun-
ez, 1981).  As has been noted previously by nu-
merous authors, this results in a simple linear
relationship between the electric and magnetic
recordings, and the components of dipole mo-
ment at any location in the brain.  More precise-
ly, if we divide the brain volume into N/3 small
volume elements and approximate the local di-
pole moment within each volume element with
its decomposition onto three orthogonal com-
ponents, we get 

(1)

or in matrix form

(2)

where vi is the potential at the ith electrode rel-
ative to a point at infinity, and sj is the strength
of the jth dipole component. The ith row of the
E matrix specifies the lead field of the ith elec-
trode, i.e. how the potential at the ith electrode
varies with the strength of each dipole compo-
nent.  The sum in Equation 1 ranges over all
three dipole components of all volume ele-
ments.  Similarly, the jth column of E specifies
the gain vector for the jth dipole component, i.e.
how much the measurement at each electrode

vi ei jsj
j
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varies with the strength of the jth component.
The coefficients in E are in general complicat-
ed non-linear functions of the electrode loca-
tions, and the shape and electrical properties of
the head (see Appendix A).

For the magnetic recordings we have

(3)

or in matrix form

(4)

where mi is the component of the magnetic
field along the orientation of the ith magnetic
sensor.  The columns of the matrix B specify
the magnetic gain vector of each dipole compo-
nent.

Note that Equations 2 and 4 can be com-
bined into one equation expressing the linear
relationship between each dipole component
strength and the composite electric and mag-
netic recordings:

, where ,  (5)

More generally, if we assume some additive
noise at the sensors, we get, 

(6)

where n is a zero-mean random vector1.

Inverse Solution
The inverse problem can be stated as one

of  finding the distribution of dipole strength s
given recording data x.  Clearly, if the variance
of the noise is non-zero, there will exist no
well-defined solution to this problem.  Also,
since the rank of A is always less than or equal
to the number of sensors, there will exist infi-
nitely many indistinguishable solutions when-
ever the number of unknowns (dipole compo-
nents), exceeds the number of knowns (sensor
locations).  However, if a priori information
exists about the statistical distribution of dipole
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moment and sensor noise, the inverse problem
can be stated in terms of statistical estimation
theory.  In the linear case, this corresponds to
finding the linear operator that minimizes the
expected difference between the estimated and
the correct solution.  More specifically, the ex-
pected error ErrW can be defined as 

(7)

where W is a linear operator that maps a re-
cording vector x into an estimated solution vec-
tor .  If we assume that both the noise vector
n and the dipole strength vector s are normally
distributed with zero mean and covariance ma-
trices C and R, respectively, Equation 7 be-
comes

(8)

(9)

,   where    

(10)

(11)

(12)

This expression can be explicitly minimized by
taking the gradient, setting it to zero and solv-
ing for W.  This yields an optimal linear esti-
mator,

(13)

The expression for the optimal inverse
linear operator W given in (13) can be shown to
be equivalent to the so called minimum-norm
solution (Tikhonov & Arsenin, 1977; Ha-
malainen & Ilmoniemi, 1984), provided the co-
variance matrices C and R are proportional to
the identity matrix.  This corresponds to the as-
sumption that both the noise at each sensor and
the strength of each dipole are independent and

ErrW Wx s- 2á ñ=
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of equal variance.  An advantage of the present
formulation is that any empirical observations
or reasonable assumptions about the second or-
der statistics of the sensor noise and the dipole
strengths can be explicitly incorporated to con-
strain the solution. 

It is also worth pointing out that evaluat-
ing W from Equation 13 only requires inver-
sion of a matrix square in the number of
knowns (sensors), rather than square in the
number of unknowns (dipole components).
This is important since the time required to in-
vert an N by N matrix is proportional to N3, and
the number of sensors will typically be much
smaller than the large number of dipole compo-
nents (~10,000) that are required to accurately
tile the cortical mantle (see below).  The only
potentially time consuming part of evaluating
W is the matrix multiplication with R, which in
the worst case will take time proportional to the
square of the number of dipole components.
However, if we conservatively make no a prio-
ri assumptions about long-range correlations,
then the R matrix will be very sparse, and  the
memory and time needed for calculating W
will increase more or less linearly with the
number of unknowns.

Error Prediction
An important advantage of the linear esti-

mation approach to the inverse problem is that
it is possible to quantify the influence of sensor
noise and activity of other dipoles on estimated
dipole strengths.  More precisely, the ith row of
the matrix  M = WA -  I  specifies how much a
unit of dipole strength at each dipole location
would contribute to the estimation error of the
ith dipole.  Consequently, the expected squared
error of the strength of the ith dipole due to ac-
tivity of other dipoles is given by MiRMi

T,
where Mi is the ith row of M, and R is the co-
variance matrix of the sources.  Similarly, the
ith row of the matrix W specifies how much a
unit of noise at each sensor contributes to the
estimation error of the ith dipole strength.  The
expected squared estimation error for the ith di-
pole due to noise is given by WiCWi

T, where
Wi is the ith row of W and C is the covariance
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matrix of the noise.
Such expressions for the likely estimation

errors can be quite useful for quantifying confi-
dence intervals for hypothesis testing, as well
as for designing sensor configurations which
optimize the estimation accuracy in some re-
gion of interest.  Similar measures are difficult
to obtain for iterative non-linear approaches to
the inverse problem without explicit, computa-
tionally intractable searches for alternate solu-
tions.

CONSTRAINING THE INVERSE SOLU-
TION

The inclusion of electric and magnetic
data in a single formulation constrains the solu-
tion to the inverse problem since these two re-
cording techniques often yield complementary
information (see Model Studies below).  Nev-
ertheless, many equivalent solutions will re-
main, even in the presence of a single source,
and it is necessary to add additional constraints
in the form of a priori information about likely
solutions.  Ideally, we would like to avoid arbi-
trary a priori constraintsÑ such as having to
decide how many source dipoles the solution
will contain (cf. Scherg, 1989).  In the follow-
ing, we describe how more biologically plausi-
ble constraints can be incorporated into the lin-
ear estimation approach outlined above.  Our
goal is to constrain our solutions while retain-
ing a relatively ÕautomaticÕ procedure in which
the user is spared sensitive, yet arbitrary deci-
sions.

Using Anatomical Constraints
A crucial way to reduce the ambiguity of

the inverse problem is to incorporate anatomi-
cal constraints explicitly into the solution (see
also Wood et al., 1990; George et al., 1992).
We can consider in the forward solution only
those dipole locations and orientations that are
consistent with the anatomical data.      

A common assumption is that much of
the EEG and MEG observable at a distance is
produced by currents flowing in the apical den-
drites of cortical pyramidal cells.  Because of
the columnar organization of the cortex, the re-

sulting local dipole moment would be oriented
perpendicularly to the cortical surface.  Subdu-
ral and intracortical recordings of field poten-
tials at varying distances from an activated cor-
tical locus are consistent with this picture (see
e.g., Mitzdorf, 1987; Dagnelie, Spekreijse, &
van Dijk, 1989; Barth & Di, 1990), in general,
having revealed substantial vertical, but little
local horizontal variation in potential.  Thus, if
the shape of the cortical sheet is known, the lo-
cations and orientations of cortical sources can
be constrained by dividing the sheet into patch-
es that are sufficiently small so that a dipole in
the center of a patch accounts for any distribu-
tion of dipole moment within the patch.  The in-
verse problem then reduces to estimating the
scalar distribution of dipole strength over the
oriented cortical patches.  This should be com-
pared to unconstrained situation where we
would have to solve onto the orthogonal triples
of Òregional dipolesÓ distributed throughout the
volume of the forebrain (see e.g., Smith et al.,
1990); for a given number of dipoles, the solu-
tion is not only less constrained, but much
coarser.

It is important to note that the EEG and
MEG may be generated by activity in subcorti-
cal structures.  In order to localize such activity
correctly, the model must include dipole com-
ponents in these locations as well as in cortical
ones.    Since subcortical sources are generally
located much further away from the EEG and
MEG sensors than are the cortical sources, the
discretization of these regions can be coarser.
Some of these structures are laminated and
contain cells with elongated dendrites perpen-
dicular to the laminae (e.g., the medial superior
olive).  In structures without clearly elongated
cellular morphology, one ÒregionalÓ dipole tri-
ple in the center of each nucleus may be suffi-
cient to account for any distribution of current
flow within it.

Using the Assumed Source Covariance
Another useful type of constraint on the

inverse problem comes from a priori informa-
tion about correlation between the dipole
strength at different locations.  For instance, it
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is probably reasonable to assume that activities
in two neighboring patches of cortex are not
completely independent, but somewhat posi-
tively correlated.  If the correlation between
any two cortical patches is known, the prior
source covariance matrix R is given by

(14)

where s i
2 is the variance of the strength of the

ith dipole, and Corr(i,j)  is the correlation be-
tween the strengths of the ith and the jth dipoles.
The actual correlation of dipole strength as a
function of distance on the cortical surface
could be estimated by invasive recordings on
animals or human patients.  

Note that if the dipoles are assumed a pri-
ori  to be completely independent (Corr(i,j) = 0,
if i ¹  j), and have the same variance (s i

2 = s j
2),

then the method reduces exactly to the mini-
mum-norm approach mentioned above.

Using the Observed Sensor Covariance
Even after incorporating the constraints

described above, however, localized sources
still tend to be smeared out by the inverse solu-
tion.  Denser sensor arrays help for superficial
sources, but deep sources are often displaced to
the surface and spread over several gyri (see
Model Studies below).  An additional powerful
constraint on the inverse solution that we now
turn to comes from considering the entire time
course of the electric and magnetic recordings,
rather than just a single time point.

A commonly made assumption is that re-
cordings throughout an epoch are caused by ac-
tivity in a limited number of locations in the
brain, each represented by a single dipole with
fixed orientation.  For the sake of analysis, it is
useful to make the following additional as-
sumptions:  (1) the activity of each of the, say,
k locations is not completely correlated with
the activity in any of the other locations, (2) the
gain vectors of the active locations are linearly
independent, (3) the sensor noise is additive
and white with constant variance s2, i.e. C =
s2I .  The sensor covariance matrix

Ri j s is jCor r i j,( )=

, (15)

(16)

where the summations range over all active di-
poles, has a singular value decomposition giv-
en by

(17)

,  (18)

The first k column vectors U1..Uk of U form an
orthonormal basis for the so-called signal sub-
space spanned by the k linearly independent
gain vectors for the active locations, and
Uk+1..UN form an orthonormal basis for the
so-called noise subspace, defined as the or-
thogonal complement of the signal subspace.
Each eigenvalue l i specifies the component of
sensor covariance in the direction of the corre-
sponding eigenvector.  

The noise subspace projection hi of a gain
vector Ai, which can be written

  

, (19)

vanishes for true dipole locations.  It remains fi-
nite for locations whose gain vectors do not lie
entirely within the signal subspace.  The loca-
tions of the true dipoles can thus be estimated,

based on the peaks in a plot of    as a func-

tion of  location, which is essentially the idea
behind the MUSIC algorithm (Mosher, Lewis,
& Leahy, 1992).  

One limitation of this approach is that  it
requires a clear-cut separation between signal
space and noise space.  Since the eigenvalues of

D xxTá ñ=
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the sensor covariance matrix typically decrease
more or less smoothly, the choice of eigenvalue
threshold is somewhat arbitrary.  One way to
avoid this problem is by using a more graded
notion of noise subspace and signal subspace.
For instance, by weighting the projection of the
gain vectors onto every eigenvector Ui of D by
the reciprocal of the corresponding eigenvalue
l i, a measure can be obtained which is large for
any gain vector which has a significant compo-
nent in a direction of low sensor covariance
(Ònoise subspaceÓ component), without requir-
ing an explicit eigenvalue threshold.  More pre-
cisely, a new measure xi can be defined as

(20)

Note that xi converges to hi as  

and  .  

This measure can then be incorporated
into the linear estimation framework as some-
thing similar to an a priori variance estimate2

for the ith dipole as 

(21)

where f is a continuous, non-decreasing func-
tion.  As before, information about correlation
between dipole component strengths of neigh-
boring locations can be coded into the estimat-
ed source covariance matrix R by

(22)

Note that if the condition number of  D is
close to unity (i.e. all eigenvalues equal), then
all  Rii are also equal and this method essential-
ly reduces to the minimum-norm-like approach
discussed above.  However, if the largest and
smallest eigenvalues are significantly different,
as is usually the case, this method will assign
low a priori variance estimates to dipole com-
ponents with significant Ònoise-spaceÓ projec-

xi

Ai
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l 1¼ k ¥®
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Ri i f 1
xi

( )=

Ri j Ri iRj j= Corr i j,( )( )

tions, essentially eliminating many of the loca-
tions in the brain from consideration.  In the
model studies that follow, we have chosen f(x)
= x.  However, the localization of deep, point--
like sources can be further improved by choos-
ing an f(x) that pushes small arguments closer
to zero.

Although the sensor covariance matrix D
can not be measured directly, it can be approx-
imated by

, (23)

where x1...xn are the recording vectors at n dif-
ferent times.  With extended epochs of activity,
it may be preferable to calculate a new set of
RiiÕs for each of a series of sub-epochs to help
tease apart nearby sources, since different com-
binations of sources may be active in different
sub-epochs.  Note that Equation 20 applies only
to dipoles whose orientation is known.  Howev-
er, it can be extended to handle Òregional di-
polesÓ in a manner similar to that developed in
Mosher, Lewis, and Leahy (1992).

Using PET Information
Although activity imaging techniques

like PET and functional MRI may provide little
information about the fine-grained temporal se-
quence of brain activity, they do provide infor-
mation about average brain activity with rela-
tively high and uniform spatial resolution.  It
may be reasonable to assume that regions in the
brain that show increased activity using meta-
bolic techniques are also ones that are on the
average more electrically active over time.
Thus, a simple way to incorporate this data into
the framework outlined above is to make the
prior variance estimate for a location in the
brain an increasing function of the PET or func-
tional MRI values at that location.  It would
clearly be preferable to have a more precise,
empirically-based model of how the processes
that affect PET and functional MRI signals
(e.g. cerebral blood flow or hemoglobin oxy-
genation) are related to the current dipole dis-
tribution of the EEG and MEG.

Dö 1
n

x1 ¼ xn x1 ¼ xn

T
=
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FINDING THE CORTICAL SURFACE
For the approach described above to be

practically useful, the shape of the cortical
sheet (and the location of possible subcortical
sources) must be known.  Since the precise ge-
ometry of the cortical manifold varies substan-
tially among different people, it is essential to
be able to reconstruct the cortical sheet of each
subject from non-invasive imaging techniques,
like MRI.  This poses two daunting challenges:
(1) the MRI data has to have sufficient spatial
resolution in all directions to resolve all the sul-
ci and gyri, while also providing sufficient con-
trast between the relevant tissue types, (2) a
computationally tractable algorithm has to be
developed for automatically constructing a
wire-frame representation of the cortical sheet
based on the MRI data.

Three-Dimensional MRI Reconstruction
With conventional two-dimensional

MRI, it is possible to obtain images with excel-
lent contrast between most relevant tissue
types, like cortical gray and white matter, cere-
brospinal fluid, skull, and scalp with an in--
plane resolution of better than 1 mm.  However,
the resulting 2-D sections are usually relatively
thick (e.g., 3-6 mm).  Thus, the resolution in the
direction perpendicular to the plane of section
is much poorer than within the planeÑ individ-
ual volume elements (voxels) are elongated.
This causes problems whenever the cortical
surface deviates from being nearly perpendicu-
lar to the slice plane; single voxels will then av-
erage gray and white matter together, generat-
ing a smeared image of the cortical mantle.

Using so-called volume acquisition tech-
niques, it is theoretically possible to achieve
resolutions of 1 mm in all directions.  Unfortu-
nately, current volume acquisition protocols
are inherently less flexible than the protocols
possible with 2-D scans (since each pulse ex-
cites the entire volume of the brain, interleav-
ing is not possible, restricting protocols to
smaller flip angles and shorter TR values).  On
the standard MRI scanner available to us for
this study, the contrast between cortical gray

and white matter possible with an optimal 2-D
inversion recovery (IR) protocol was far supe-
rior to that possible using volume acquisition.
Since the tessellation of the cortex depends on
a clear gray/white matter distinction (see be-
low), we had to find a way to overcome the
Òpartial-volumingÓ problem.

We have developed a method for combin-
ing three orthogonal (coronal, sagittal, horizon-
tal) series of conventional, moderately thick
sections into a single volumetric data set with
the same high (i.e., subslice) resolution in all
three directions.  The method is based on the
simple observation that each pixel in a typical
2-D scan represents a weighted average of the
signal emitted from an elongated rectangular
prism of tissue (pixel x-size by pixel y-size by
slice thickness).  By combining data from dif-
ferent directions it is possible to estimate the
signal emitted from cubic voxels of smaller
size using a linear estimation technique very
similar to that described above for current
source localization (see Appendix B).

A major advantage of this technique is
that any 2-D acquisition protocol can be used,
including inversion recovery (IR) protocols for
T1 weighting, and spin-echo (SE) protocols
with long repetition times for proton-density
and T2 weighting.  By combining spatially reg-
istered 3-D data sets made with different proto-
cols, it is possible to simultaneously classify all
major tissue types, which is not possible using
any single scan type (cf. Buxton & Greensite,
1991).  Thus, we can retain optimal grey/white
matter contrast (crucial for cortical surface re-
construction) while still being able to distin-
guish gray and white matter from skull, skin,
and cerebrospinal fluid (necessary for automat-
ic skull removal).

Figure 1A shows a stack of 6 mm thick
coronal T1 weighted (inversion-recovery) slic-
es of the brain (see Methods).  The resolution
within the section plane is obviously much bet-
ter than in the anterior-posterior direction.  The
3-D reconstruction resulting from combining
the sagittal and horizontal slice series with the
coronal series is shown in Figure 1B.  The res-
olution in the anterior-posterior direction is
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Figure 1.  Three-dimensional MRI reconstruction.  Coronal sections (6 mm thick) from an 
inversion recovery protocol are merely stacked in A.  In B, the coronal series has been 
combined with a horizontal and a sagittal series using a linear deblurring technique to give an 
image with uniformly high resolution.  C and D illustrate the same deblurring technique 
applied to proton density and T2-weighted images.  The contrast between the gray and white 
matter is much reduced in comparison to the T1-weighted inversion recovery image.
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greatly improved at only a small cost to the in--
plane resolution.  Note that this image could
have been sectioned in any other (non-orthogo-
nal) plane without a loss in resolution.  The
three-dimensional reconstruction of the proton
density and T2 weighted data sets are shown in
Figures 1C and 1D, for comparison.  Clearly,
the contrast between the gray and white matter
is most striking in the T1 image.

ÒShrink-WrapÓ Surface Reconstruction
A very realistic-appearing image of the

cortex can be generated by displaying stacked
sections using interslice interpolation and
transparency (see e.g., Damasio and Frank,
1991).  Such an image, however, cannot be di-
rectly used to constrain the orientations of
source dipoles.  For this, we need to construct a
wireframe model that explicitly recovers the to-
pology of the cortical sheet.  A typical approach
to this problem has been to manually trace the
outline of the cortex in series of 2-D sections,
and then use some heuristic algorithm (or a
practiced hand) to connect the contours in each
section into a continuous surface.  The main
problems with this approach are:  (1) it requires
considerable manual work for each subject, (2)
it has trouble with sulci or gyri that are  parallel
to the plane of section, (3) the topology of the
resulting surface may be incorrect, especially
when contours in each section have been made
continuous for computational reasons (e.g., in
sections where the temporal lobe is Õde-
tachedÕ), and (4) the resulting surface is diffi-
cult or impossible to unfold accurately.  

The method we have developed for re-
constructing the cortical surface largely over-
comes these problems by adopting an automat-
ic deformable template algorithm (see e.g.,
Yuille, 1991).  The basic idea behind this meth-
od is to start with a simple surface with the cor-
rect topologyÑ e.g, a circle in 2-D, or a spheri-
cal shell in 3-DÑ and then gradually deform
the shape of the surface by rubber-sheet trans-
formations to conform to the cortical sheet.
The location of each vertex of the surface is up-
dated iteratively according to elastic ÒforcesÓ
between neighboring vertices, and repulsive

and attractive forces along the local surface
normal depending on the MRI data at the ver-
tex.  A nice feature of this technique is that all
computations needed in the Òshrink-wrappingÓ
process are local.  The motion of each vertex
can be calculated based on local information
about neighboring vertices, and local MRI data.
The more global topological constraint is en-
forced implicitly by the connectivity of the ver-
tices (see Appendix C).

In order to speed up convergence of the
3-D Òshrink-wrapÓ (and to avoid the computa-
tional expense of determining whether the sur-
face has passed through itself at each time
step), an initial estimate of the boundary be-
tween the cortical gray and white matter was
obtained using a three-stage flood-filling algo-
rithm.  The white matter of the brain, as classi-
fied by MRI data, is initially filled in 3-D from
one or more seed locations inside the white
matter.  Then, a second fill of the volume out-
side the volume filled by the initial fill is per-
formed to eliminate internal holes.  Finally, the
volume inside the volume filled by the second,
external fill is itself filled, to eliminate external
islands.  The result is a connected volume rep-
resentation of the white matter.  A single,
closed tessellation of the white matter surface
can then be constructed from the faces of filled
voxels bordering unfilled voxels.  Figure 2A
shows the result of Òshrink-wrappingÓ the ini-
tial tessellation of the flood-filled white matter
against the MRI data to smooth it.  The local re-
pulsive criterion has been set so that the com-
puted surface settles near the surface of the
gray matter.

Flattening the Cortex
A straightforward adaptation of the tech-

nique described above can be used to computa-
tionally flatten the cortical sheet.  The surface
is relaxed towards minimal surface tension  by
including only the local elastic forcesÑ i.e., by
freeing it from the MRI data.  The algorithm
will then gradually unfold the cortex while pre-
serving its topology and minimizing local geo-
metric distortions.  Figures 2B, 2C, and 2D
show snapshots of the cortical surface during
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