Spotlight image
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Hide

Nothing Never Happens

Students in Dr. Renner’s COGS 102B: Cognitive Ethnography class spent the 10-week winter quarter tuning their cognitoscopes... (more)



Creel, S. C. (In press). Ups and downs in auditory development: Preschoolers’ sensitivity to pitch contour and timbre. Cognitive Science Journal.
Much research has explored developing sound representations in language, but less work addresses developing representations of other sound patterns. This study examined preschool children’s musical representations using two different tasks: discrimination and sound–picture association. Melodic contour—a musically relevant property—and instrumental timbre, which is (arguably) less musically relevant, were tested. In Experiment 1, children failed to associate cartoon characters to melodies with maximally different pitch contours, with no advantage for melody preexposure. Experiment 2 also used different-contour melodies and found good discrimination, whereas association was at chance. Experiment 3 replicated Experiment 2, but with a large timbre change instead of a contour change. Here, discrimination and association were both excellent. Preschool-aged children may have stronger or more durable representations of timbre than contour, particularly in more difficult tasks. Reasons for weaker association of contour than timbre information are discussed, along with implications for auditory development.
Creel, S. C., Rojo, D. P., & Paullada, A. N. (In press). Effects of contextual support on preschoolers’ accented speech comprehension. Journal of Experimental Child Psychology.
Young children often hear speech in unfamiliar accents, but relatively little research characterizes their comprehension capacity. The current study tested preschoolers’ comprehension of familiar-accented vs. unfamiliar-accented speech with varying levels of contextual support from sentence frames (full sentences vs. isolated words) and from visual context (four salient pictured alternatives, vs. the absence of salient visual referents). The familiar-accent advantage was more robust when visual context was absent, suggesting that previous findings of good accent comprehension in infants and young children may result from ceiling effects in easier tasks (picture fixation, picture selection) relative to the more-difficult tasks often used with older children and adults. In contrast to prior work on mispronunciations, where most errors were novel-object responses, children in the current study did not select novel-object referents above chance levels. This suggests that some property of accented speech may dissuade children from inferring that an unrecognized familiar-but-accented word has a novel referent. Finally, children showed detectable accent processing difficulty despite presumed incidental community exposure. Results suggest that preschoolers’ accented speech comprehension is still developing, consistent with theories of protracted development of speech processing.
Núñez, Rafael, and Fias, Wim. (2015). "Ancestral Mental Number Lines: What Is the Evidence?." Cognitive Science.
Over the last two decades substantial efforts have been made to investigate the question of whether the building blocks of human mathematical concepts ultimately have their origins in biological evolution. A relevant case study is the “mental number line” hypothesis, which states that numbers are represented in the brain as spatial entities along a mental line, yielding behavioral manifestations. Some developmental (de Hevia & Spelke, 2009, 2010), cross-cultural (Dehaene, Izard, Spelke, & Pica, 2008a), and comparative (Drucker & Brannon, 2014) studies have suggested that number-to-space mappings—underlying mental number lines—are biologically endowed universals, emerging independently of language and culture. Recently, going further, Rugani, Vallortigara, Priftis, and Regolin (2015) have argued that newborn domestic chicks (Gallus gallus) map numbers to space resembling humans’ mental number line, and they claimed that “spatial mapping of numbers from left to right may be a universal cognitive strategy available soon after birth” (p. 536). After training newborn chicks to circumnavigate a centered panel depicting a target numerosity (5 elements for some chicks, 20 for others), the researchers allowed the chicks to explore an environment containing two panels—to the left and to the right, displaying identical numerosities either smaller or greater than the target (2 or 8 elements, and 8 or 32, respectively). The authors reported that around 70% of the time the chicks preferred the left panel when the numerosity was smaller than the target and the right one when it was greater. They interpreted these results as evidence that there is a left-to-right number-to-space mapping in newborn chicks that resembles humans’ mental number line. But do the data really support these claims?
Cooperrider, K., Slotta, J., and Núñez, R. (2016). Uphill and Downhill in a Flat World: The Conceptual Topography of the Yupno House. Cognitive Science.
Speakers of many languages around the world rely on body-­‐based contrasts (e.g. left/right) for spatial communication and cognition. Speakers of Yupno, a language of Papua New Guinea’s mountainous interior, rely instead on an environment-­‐based uphill/downhill contrast. Body-­‐based contrasts are as easy to use indoors as outdoors, but environment-­‐ based contrasts may not be. Do Yupno speakers still use uphill/downhill contrasts indoors and, if so, how? We report three studies on spatial communication within the Yupno house. Even in this Hlat world, uphill/downhill contrasts are pervasive. However, the terms are not used according to the slopes beyond the house’s walls, as reported in other groups. Instead, the house is treated as a microworld, with a "conceptual topography" that is strikingly reminiscent of the physical topography of the Yupno valley. The phenomenon illustrates some of the distinctive properties of environment-­‐based reference systems, as well as the universal power and plasticity of spatial contrasts.

Featured Classes
2nd Summer Session 2016:


Recent News & Links (see all)


CogSci alumni take on 10,000-mile ‘Mongol Rally’ for local charity

Nick Bokaie, a native Petaluman who last year graduated with a degree in cognitive science from the University of California, San Diego, said he stumbled on the rally online soon after he’d finished school and decided there was “no better time” to take on the journey, which starts in London and ends in Russia, about 400 miles north of Mongolia’s capital.


Department Events
Campus Wide Events